Points of Fintie Order

Tangent-Chord Arithmetic on Cubic Curves

Let K be a field and C a cubic curve defined over K given by a polynomial $f(x, y)=\sum_{i+j=3} a_{i j} x^{i} y^{j}$.
Ideas.

- Bézout's Theorem asserts that : new points on C can be construct from known points using tangents and chords.
- The tangent-chord arithmetic gives some sort of composition law on the set $C(K)$.
- Choose a base point on the curve C. The compoistion law gives the curve C a structure of an abelian group.

Tangent-Chord Arithmetic: Conditions

Let K be a field and C a cubic curve defined over K given by a polynomial $f(x, y)=\sum_{i+j=3} a_{i j} x^{i} y^{j}$.
Ideas.

- One should work on the projective plane curve:

$$
C: F(X, Y, Z)=\sum_{i+j=3} a_{i j} X^{i} Y^{j} Z^{3-i-j}=0 .
$$

- The curve should be smooth.
- The base point \mathcal{O} should have coordinate in K.

The Composition Law on Elliptic Curves

Let K be a field and E an elliptic curve over K given by a Weierstrass equation with base point $\mathcal{O}=[0,1,0]$ (point at infinity).
Composition Law. Let $P, Q \in E$.

- Let $\ell=\overline{P Q}$ be the line through P and Q (if $P=Q$, let ℓ be the tangent line to E at P).
- Let R be the third point of intersection of ℓ with E.
- Let ℓ^{\prime} be the line through R and \mathcal{O}.

Then ℓ^{\prime} intersects E at R, \mathcal{O}, and a third point. We denote that third point by $P+Q$.

Proposition. The composition law makes E into an abelian group with identity element \mathcal{O}.

The Addition Law Algorithm

Let K be a field with $\operatorname{Char}(K) \neq 2$ and E an elliptic curve over K given by the equation

$$
E: y^{2}=a x^{3}+b x^{2}+c x+d
$$

Addition Law Algorithm. Let $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \in E$, and $\left(x_{3}, y_{3}\right)$ the coordinates of $P+Q$.

- $-P=\left(x_{1},-y_{1}\right)$.
- Let $\ell=\overline{P Q}$ be the line through P and Q (if $P=Q$, let ℓ be the tangent line to E at P). Let m_{ℓ} be the slope of the line ℓ. Then

$$
\begin{aligned}
& x_{3}=-x_{1}-x_{2}-\frac{b}{a}+\frac{1}{a} \cdot m_{\ell}^{2} \\
& y_{3}=-y_{1}+m_{\ell}\left(x_{1}-x_{3}\right)
\end{aligned}
$$

The Addition Formula of \wp

Let L be a lattice in \mathbb{C} and E_{L} the corresponding elliptic curve

\[

\]

Propostion. We have the folloing formula:

$$
\wp(z+u)=-\wp(z)-\wp(u)+\frac{1}{4}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}(u)}{\wp(z)-\wp(u)}\right)^{2} .
$$

Let K be a field with $\operatorname{Char}(K) \neq 2$ and $E: y^{2}=f(x)$ an elliptic curve over K, for some $f(x) \in K[x]$.
Proposition I.8.13. Let F be any field extension of K and

$$
\sigma: F \longrightarrow \sigma F
$$

be any field isomorphism which leaves fixed all elements of K. Let $P \in \mathbb{P}^{2}(F)$ be a point of exact order N on E. Then

$$
\sigma P:=[\sigma X, \sigma Y, \sigma Z] \in \mathbb{P}^{2}(\sigma F)
$$

has exact order N.
Idea.

$$
\sigma\left(P_{1}+P_{2}\right)=\sigma P_{1}+\sigma P_{2}
$$

Denote $E[N]$ the set of the N-torsion subgroup of E (points of order N), that is,

$$
E[N]:=\{P \in E(\bar{K}): N P=\mathcal{O}\}
$$

Proposition I.8.14. Let $K \leq \mathbb{C}$. Denote $x(P)$ and $y(P)$ the x and y-coordinates of P, respectively. The fields

$$
\begin{aligned}
& K_{N}:=K(x(P), y(P): P \in E[N]) \\
& K_{N}^{+}:=K(x(P): P \in E[N])
\end{aligned}
$$

are finite Galois extensions of K. Moreover, the Galois group $\mathrm{Gal}\left(K_{N} / K\right)$ is isomorphic to a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$.
Proposition I.8.15. Let N be a positive integer with $N \neq 0$ in K. Then

$$
E[N] \simeq \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}
$$

There are at most N^{2} points of order N over any extension F of K.

Suppose $E: y^{2}=x^{3}+a x+b$. The n-th division polynomial is defined as follows: $\psi_{1}:=1, \psi_{2}:=2 y$,

$$
\begin{aligned}
\psi_{3} & :=3 x^{4}+6 a x^{2}+12 b x-a^{2} \\
\psi_{4} & :=4 y\left(x^{6}+5 a x^{4}+20 b x^{3}-5 a x^{2}-4 a b x-8 b^{2}-a^{3}\right), \\
\psi_{2 n+1} & :=\psi_{n+2} \psi_{n}^{3}-\psi_{n-1} \psi_{n+1}^{3}, \\
2 y \cdot \psi_{2 n} & :=\psi_{n}\left(\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2}\right) .
\end{aligned}
$$

Then

$$
n P=\left(\frac{x \psi_{n}^{2}-\psi_{n-1} \psi_{n+1}}{\psi_{n}^{2}}, \quad \frac{\psi_{2 n}}{2 \psi_{n}^{4}}\right)
$$

Note that

$$
\begin{aligned}
\psi_{n}^{2} & =n^{2} x^{n^{2}-1}+\text { lower terms } \\
x \psi_{n}^{2}-\psi_{n-1} \psi_{n+1} & =x^{n^{2}}+\text { lower terms }
\end{aligned}
$$

are relatively prime in $K[x]$.

Remark. For the elliptic curve $E_{L}: y^{2}=4 x^{3}-g_{2} x-g_{3}$, when $K=\mathbb{Q}\left(g_{2}, g_{3}\right)$, the field K_{N}^{+}will be a splitting field of certain polynomial which can be determined by the evaluations of \wp-function at the points u with $N u \in L$.

- N odd.

$$
F_{N}(x)=N \prod_{0 \neq u \in \mathbb{C} L L, N u \in L}^{\prime}(x-\wp(u)),
$$

with one u taken from each pair u and $-u$.
Denote $f_{N}(z):=F_{N}(\wp(z))$.

- N even.

$$
F_{N}(x)=N \prod_{N u \in L, 2 u \notin L}(x-\wp(u)),
$$

Denote $f_{N}(z):=-\frac{1}{2} \wp^{\prime}(z) F_{N}(\wp(z))$.
We have

$$
f_{N}(z)^{2}=N^{2} \prod_{0 \neq u \in \mathbb{C} / L, N u \in L}(\wp(z)-\wp(u)) .
$$

Let E be any elliptic curve over \mathbb{Q}.
Mordell's Theorem. The group $E(\mathbb{Q})$ is a finitely generated abelian group. That is,

$$
E(\mathbb{Q}) \simeq E(\mathbb{Q})_{\text {tors }} \oplus \mathbb{Z}^{r}
$$

Rank. The non-negative integer r is called the rank of $E(\mathbb{Q})$.
Proposition I.8.17. Let E_{n} be the elliptic curve
$E_{n}: y^{2}=x^{3}-n^{2} x$ for some $n \in \mathbb{Z}$. Then

$$
E_{n}(\mathbb{Q})_{\text {tors }}=\{(0, \pm n),(0,0)\} \cup\{\mathcal{O}\} .
$$

Recall. n is congruent if and only if there exist $x, y \in \mathbb{Q}$ with $y \neq 0$ such that $y^{2}=x^{3}-n^{2} x$.
Proposition I.8.18. The positive integer n is a congruent number if and only if rank $E_{n}(\mathbb{Q}) \neq 0$.

Recall (Proposition I.2). Let n be a squarefree positive integer. Suppose there exist $x, y \in \mathbb{Q}$ with such that $y^{2}=x^{3}-n^{2} x$ and $x=s^{2}$ for some rational number s of the form

$$
s=\frac{k}{2 \ell}, \quad k, \ell \in \mathbb{Z}, \operatorname{gcd}(k, 2 \ell)=1, \quad \operatorname{gcd}(k, n)=1 .
$$

Then there exist a right triangle with area n with sides

$$
a=\sqrt{x+n}-\sqrt{x-n}, \quad b=\sqrt{x+n}+\sqrt{x-n}, \quad c=2 \sqrt{x} .
$$

Proposition I.9.19 . There is a one-to-one correspondence between the following two sets:

$$
\begin{aligned}
& C_{n}:=\left\{(a, b, c): a<b, a^{2}+b^{2}=c^{2}, a b=2 n\right\} \\
& S_{n}:=\left\{(x, \pm y):(x, \pm y) \in 2 E_{n}(\mathbb{Q})-\{\mathcal{O}\}\right\},
\end{aligned}
$$

given by

$$
\begin{gathered}
(a, b, c) \mapsto\left(\frac{c^{2}}{4}, \pm \frac{\left(b^{2}-a^{2}\right) c}{8}\right), \\
(x, \pm y) \mapsto(\sqrt{x+n}-\sqrt{x-n}, \sqrt{x+n}+\sqrt{x-n}, 2 \sqrt{x}) .
\end{gathered}
$$

Proposition I.9.20 . Let E be the elliptic curve

$$
E: y^{2}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right), \quad, \alpha_{i} \in \mathbb{Q} .
$$

Let $P=\left(x_{0}, y_{0}\right) \in E(\mathbb{Q})-\{\mathcal{O}\}$. Then
$P=\left(x_{0}, y_{0}\right) \in 2 E(\mathbb{Q})-\{\mathcal{O}\}$ if and only if all $x_{0}-\alpha_{i}$ are squares of rational numbers.

