Points of Fintie Order

[Koblitz]: 1.7-9



Tangent—Chord Arithmetic on Cubic Curves

Let K be a field and C a cubic curve defined over K given by a
polynomial f(x,y) = > ax'y’.
i+j=3
ldeas.
e Bézout's Theorem asserts that : new points on C can be
construct from known points using tangents and chords.
e The tangent-chord arithmetic gives some sort of
composition law on the set C(K).
e Choose a base point on the curve C. The compoistion law
gives the curve C a structure of an abelian group.



Tangent—Chord Arithmetic: Conditions

Let K be a field and C a cubic curve defined over K given by a

polynomial f(x,y) = Y ayx'yl.
i+j=3

ldeas.
e One should work on the projective plane curve:

C: F(X,Y,2)=)Y_ aX'YIZ* ' =o.
i+j=3
e The curve should be smooth.
e The base point O should have coordinate in K.



The Composition Law on Elliptic Curves

Let K be a field and E an elliptic curve over K given by a
Weierstrass equation with base point O = [0, 1, 0] (point at
infinity).

Composition Law. Let P, Q € E.

e Let ¢ = PQ be the line through P and Q (if P = Q, let ¢ be
the tangent line to E at P).

e Let R be the third point of intersection of ¢ with E.

e Let ¢’ be the line through R and O.
Then ¢ intersects E at R, O, and a third point. We denote that
third point by P + Q.

Proposition. The composition law makes E into an abelian
group with identity element O.



The Addition Law Algorithm
Let K be a field with Char(K) # 2 and E an elliptic curve over
K given by the equation

E:y?=ax®+bx®+cx+d.

Addition Law Algorithm. Let P = (x1, y1), Q = (X2, y2) € E,
and (xs, y3) the coordinates of P + Q.
o —P=(x1,-).
e Let ¢ = PQ be the line through P and Q (if P = Q, let ¢ be
the tangent line to E at P). Let m, be the slope of the line

£. Then
X3 = —X X: + 1 I”2
8 ! 2 a a e

Y3 = —y1 + my(xq — X3).



The Addition Formula of g

Let L be a lattice in C and E; the corresponding elliptic curve

Y2Z = 4X3 — go(L)XZ% — g3(L)Z°.

C/L — EL
0 0 =1[0,1,0]
z [0(2), ©'(2). 1]
~Z [0(2), —¢'(2),1]
zZ+u [p(z+ ), 9 (z+ u), 1]

Propostion. We have the folloing formula:

/ _ 2
(2 +u) = —p(2) — p(u) + % (W) '



Let K be a field with Char(K) # 2 and E : y? = f(x) an elliptic
curve over K, for some f(x) € K[x].

Proposition 1.8.13. Let F be any field extension of K and
c: F—oF

be any field isomorphism which leaves fixed all elements of K.
Let P € P?(F) be a point of exact order N on E. Then

oP:=[oX,0Y,0Z] € P?(cF)

has exact order N.

ldea.
U(P1 + Pg) =0oPy 4+ oPs.



Denote E[N] the set of the N-torsion subgroup of E (points of
order N), that is,

E[N] := {P € E(K): NP = O}.

Proposition 1.8.14. Let K < C. Denote x(P) and y(P) the x-
and y-coordinates of P, respectively. The fields

Kn = K (x(P), y(P) : P e E[N])
Ky = K(x(P): P e E[N))

are finite Galois extensions of K. Moreover, the Galois group
Gal (Kn/K) is isomorphic to a subgroup of GLx(Z/NZ).

Proposition 1.8.15. Let N be a positive integer with N # 0 in
K. Then
E[N] ~ Z/NZ x 7,/ NZ.

There are at most N? points of order N over any extension F of
K.



Suppose E : y? = x3 4+ ax + b. The n-th division polynomial is
defined as follows: 1 := 1, i := 2y,

Y = 3x* + 6ax? + 12bx — &,
Vs = 4y(x® + 5ax* +20bx® — 5ax® — 4abx — 8b° — &°),
77Z)2n—|-1 = ¢n+2¢/37 - 7/’n—1¢,37+1a

2y - than = v (Vni2¥iy — ¥n-20Bis ) -

Then

nP = (le% - ¢Z—1¢n+1 : ¢22> .
(r 24
Note that

2
Y2 = Px™ 1 4+ lower terms,
/ 2
X2 — hp_11hnsq = X" + lower terms,

are relatively prime in K[x].



Remark. For the elliptic curve E; : y? = 4x3 — gox — g3, when
K = Q(g2, g3), the field K will be a splitting field of certain
polynomial which can be determined by the evaluations of
p-function at the points u with Nu € L.

o N odd.

!/

Fv)=N T  (x—pw),

0#£ueC/L,Nuel

with one u taken from each pair u and —u.
Denote fy(2) := Fn(p(2))-

e N even.
Fnx) =N J[ &x-p),
Nuel2ugl
Denote fy(2) := —%p’(Z)FN(p(Z)).
We have

iwz)P =N J[ (e(2) - p(u)).

0#£ueC/L,NuelL



Let E be any elliptic curve over Q.
Mordell’s Theorem. The group E(Q) is a finitely generated
abelian group. That is,

E(@) = E(@)tors VA

Rank. The non-negative integer r is called the rank of E(Q).

Proposition 1.8.17. Let E,, be the elliptic curve
E,: y? = x3 — nPx for some n € Z. Then

En(@)tors = {(Oa :l:n)’ (07 O)} U {O}

Recall. nis congruent if and only if there exist x, y € Q with
y # 0 such that y? = x3 — nPx.

Proposition 1.8.18. The positive integer nis a congruent
number if and only if rankE,(Q) # 0.



Recall (Proposition 1.2). Let n be a squarefree positive
integer. Suppose there exist x, y € Q with such that
y? = x3 — n?x and x = s for some rational number s of the
form
k
s= o7 k,t € Z,gcd(k,2() =1, gcd(k,n)=1.
Then there exist a right triangle with area n with sides

a=vx+n—+vx—n, b=+vVx+n+vVx—n, c=2Vx.

Proposition 1.9.19 . There is a one-to-one correspondence
between the following two sets:

Cn:={(a,b,c):a< b,a + b>=c? ab=2n}
Sn={(x,xy) : (x,£y) € 2E,(Q) — {O}},

¢ (b?-a)c
(av b7 C) = (45 is) )

(x,2y) = (VXx+n—vVx—n+vx+n+vx—n2Vx).

given by




Proposition 1.9.20 . Let E be the elliptic curve
E:y?=(x—oar)(x—a2)(x—as), ,a€Q

Let P = (X0, ¥0) € E(Q) — {O}. Then

P = (X0, ¥0) € 2E(Q) — {O} ifand only if all xo — «;
are squares of rational numbers.
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