Some properties of \mathbb{Z}

Recall.

1. Every ideal in \mathbb{Z} is a principal ideal.

2. Unique factorization theorem (Fundamental theorem of arithmetic). For an integer n with $n > 1$, then

$$n = p_1^{e_1} p_2^{e_2} \ldots p_r^{e_r}$$

for some distinct prime numbers $p_1, p_2, \ldots p_r$, and some $e_i \in \mathbb{Z}_{>0}$.

3. Division algorithm. Let a and b be two integers with $b \neq 0$. Then there exist two integers q and r such that

3.1 $a = bq + r$, and
3.2 either $r = 0$ or $|r| < |b|$.
Some properties of $\mathbf{F}[x]$ with $\mathbf{F} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$

Recall. Let $\mathbf{F} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$.

1. **Division algorithm.** Let $f(x)$ and $g(x) \in \mathbf{F}[x]$. Suppose that $g(x) \neq 0$. Then there exist unique polynomials $q(x)$ and $r(x)$ such that
 1.1 $f(x) = g(x)q(x) + r(x),$
 1.2 $r(x) = 0$ or $\deg r(x) < \deg g(x)$.

2. Every ideal in $\mathbf{F}[x]$ is a principal ideal.

3. **Unique factorization.** Every polynomial in $\mathbf{F}[x]$ can be uniquely represented as a product of irreducible polynomials, up to scalar multiples and the order of factors.
Euclidean Domain

Definition. A Euclidean norm on an integral domain D is a function $N : D \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ such that the following conditions are satisfied:

1. For all $a, b \in D$ with $b \neq 0$, there exist q and r in D such that
 1.1 $a = bq + r$, and
 1.2 either $r = 0$ or $N(r) < N(b)$.

2. For all $a, b \in D$, where neither a nor b is 0, $N(a) \leq N(ab)$.

An integral domain D is a Euclidean domain (or possess a Division Algorithm) if there exists a Euclidean norm on D.
Examples

1. Define \(N : \mathbb{Z} \to \mathbb{Z}_{\geq 0} \) by \(N(n) = |n| \). Then \(N \) is a Euclidean norm.

2. Let \(F \) be a field. Define \(N : F[x] - \{0\} \to \mathbb{Z}_{\geq 0} \) by \(N(f(x)) = \deg f(x) \). Then \(N \) is a Euclidean norm.

3. Consider the set of all Gaussian integers,

\[\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\}. \]

Define the norm \(N(a + bi) \) to be

\[N(a + bi) = a^2 + b^2. \]

Then \(N \) is a Euclidean norm.
$\mathbb{Z}[i]$ is a Euclidean domain

Lemma

For all $\alpha, \beta \in \mathbb{Z}[i]$, we have

1. $N(\alpha) \geq 0$,
2. $N(\alpha) = 0$ if and only if $\alpha = 0$,
3. $N(\alpha \beta) = N(\alpha)N(\beta)$.

Theorem

1. $\mathbb{Z}[i]$ is an integral domain.
2. *The function N given by $N(a + bi) = a^2 + b^2$ is a Euclidean norm on $\mathbb{Z}[i]$.*
Example
Let $\alpha = 7 + 13i$ and $\beta = 5 + 3i$. Find $q, r \in \mathbb{Z}[i]$.

Solution. We have

$$\frac{\alpha}{\beta} = \frac{(7 + 13i)(5 - 3i)}{(5 + 3i)(5 - 3i)} = \frac{74 + 44i}{34} = \frac{37 + 22i}{17}$$

The closest integer to $37/17$ is 2, while that to $22/17$ is 1. Thus, set $q = 2 + i$. Then we have

$$r = \alpha - \beta q = (7 + 13i) - (5 + 3i)(2 + i) = 2i.$$ \[\square\]
Proposition. Let D be a Euclidean domain with Euclidean norm N. Then

1. $N(1)$ is minimal among all $N(a)$ for nonzero $a \in D$.
2. $u \in D$ is a unit if and only if $N(u) = N(1)$.

Example
The units of $\mathbb{Z}[i]$ are ± 1, and $\pm i$.
Proposition. Every ideal in a Euclidean Domain is principal.

Ideas.

1. Given an ideal I, if $I = \{0\}$, then $I = \langle 0 \rangle$.
2. If $I \neq \{0\}$, let b be an element of I of minimal norm. We claim that $I = \langle b \rangle$.
3. Given $a \in I$, there exist q and r in D such that

$$a = bq + r$$

with $r = 0$ or $N(r) < N(b)$.
4. The possibility $N(r) < N(b)$ can not occur. Thus $a = bq \in \langle b \rangle$.
Principal ideal domains (PID)

Definition. An integral domain D is a **principal ideal domain (PID)** if every ideal in D is principal.

Example

1. \mathbb{Z} and $\mathbb{Z}[i]$ are PIDs.
2. If \mathbb{F} is a field, then $\mathbb{F}[x]$ is a PID.

Proposition. Every nonzero prime ideal in a PID is a maximal ideal.
Greatest common divisor

Definition. Let R be a commutative ring and $a, b \in R$ with $b \neq 0$.

- We say that b divides a if $a = bx$ for some $x \in R$. (Notation: $b \mid a$)
- A common divisor d of a and b is a greatest common divisor of a and b if every common divisor of a and b divides d. (Notation: $d = \gcd(a, b)$)

Remark

GCD’s may not exist in general. For example, in $\mathbb{Z}[\sqrt{-3}]$, we have

$$4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}).$$

Thus, $1 + \sqrt{-3}$ and 2 both divide 4 and $2(1 + \sqrt{-3})$. However, there is no divisor of 4 and $2(1 + \sqrt{-3})$ that is divisible by both 2 and $1 + \sqrt{-3}$.
Proposition. Let D be a PID. For any nonzero d, d', we have

1. $\langle d \rangle = \langle d' \rangle$ if and only if $d' = ud$ for some unit $u \in D$.
2. if d and d' are both GCDs of a and b, then $d' = ud$ for some unit $u \in D$.
3. if d is a GCD of a and b, then there exists x, y in D such that $d = ax + by$.

Definition. Let R be a commutative ring with unity. Let $a, b \in R$. a and b are associates if $a = ub$ for some unit $u \in R$.
Euclidean algorithm

Theorem

Let D be a Euclidean domain, and a and b be two elements of D.

1. Then a GCD of a and b can be obtained by the Euclidean algorithm.
2. $\langle a \rangle + \langle b \rangle = \langle \gcd(a, b) \rangle$.

Remark

In a Euclidean domain, d is a GCD of a and b if and only if d has the largest Euclidean norm among all common divisors of a and b.
Key ideas.

1. Assume $b \neq 0$. Consider the Euclidean algorithm

$$a = bq_1 + r_1$$
$$b = r_1q_2 + r_2$$
$$\vdots$$
$$r_{n-1} = r_nq_{n+1} + 0.$$

(The process must stop because $N(r_1), N(r_2), \cdots$ is a series of strictly decreasing nonnegative integers.)

2. The element r_n is a GCD of a and b.
Example
Find the GCD of $a = 19 + 33i$ and $b = 11 + 27i$.

1. We have $a/b = (22 - 3i)/17$. Thus, choose $q_1 = 1$ and $r_1 = a - b = 8 + 6i$.

2. Then $b/r_1 = (5 + 3i)/2$. We choose $q_2 = 2 + i$. (Any of $2 + i$, $3 + i$, $2 + 2i$, $3 + 2i$ will do.) Then

 $r_2 = b - r_1 q_2 = (11 + 27i) - (8 + 6i)(2 + i) = 1 + 7i$.

3. Then $r_1/r_2 = 1 - i \in \mathbb{Z}[i]$. Thus, a GCD of a and b is $r_2 = 1 + 7i$.

Remark
Other GCD’s are $-r_2$, and $\pm ir_2$, since the units in $\mathbb{Z}[i]$ are ± 1 and $\pm i$.
Irreducibles and Primes

Definition. Let D be an integral domain.

- A nonzero non-unit element p is an irreducible of D if any factorization $p = ab$ in D has the property that either a or b is a unit.
- A nonzero non-unit element p is a prime if $p | ab$ implies $p | a$ or $p | b$.

Remarks

1. In \mathbb{Z}, an integer prime p has two properties
 1.1 If $p = ab$, then $a = \pm 1$ or $b = \pm 1$ (i.e., either a or b is a unit).
 1.2 If $p | ab$, then $p | a$ or $p | b$.

2. In an integral domain, a prime is always an irreducible, but an irreducible may not be a prime.
Examples of irreducibles that are not primes

1. In \(\mathbb{Z}[2i] \), we have

\[
4 = 2 \cdot 2 = (2i) \cdot (-2i).
\]

The numbers \(\pm 2i \) are irreducibles, but not prime.

2. In \(\mathbb{Z}[\sqrt{-5}] \), \(2, 3, 1 \pm \sqrt{-5} \) are all irreducibles, but neither of them is a prime. We have

\[
6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}),
\]

but 2 does not divide \(1 + \sqrt{-5} \) nor \(1 - \sqrt{-5} \) in \(\mathbb{Z}[\sqrt{-5}] \).
Lemma

1. An element p in an integral domain D is a prime if and only if $\langle p \rangle$ is a prime ideal.

2. An ideal $\langle p \rangle$ in a PID is a maximal ideal if and only if p is an irreducible.

3. In a PID, an element p is a prime if and only if p is an irreducible.

Corollary. In a PID, if an irreducible p divides $a_1 \ldots a_n$, then $p \mid a_i$ for at least one i.
Unique Factorization Domains

Definition. An integral domain D is a unique factorization domain (UFD) if

1. Every nonzero non-unit element of D can be factored into a product of a finite number of irreducibles.
2. If $a \in D$ has two factorizations $p_1 \ldots p_r$ and $q_1 \ldots q_s$ into products of irreducibles, then $r = s$ and q_j can be renumbered so that p_i and q_i are associates.

Example

1. \mathbb{Z} is a UFD. (Fundamental theorem of arithmetics.)
2. The integral domain $\mathbb{Z}[\sqrt{-3}]$ is not a UFD. (We have

$$4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}),$$

where $2, 1 \pm \sqrt{-3}$ are all irreducibles, but mutually non-associates.)
Theorem. Every PID is a UFD.

Key Lemmas.

1. Let R be a commutative ring. Suppose that $I_1 \subseteq I_2 \subseteq \cdots$ is an ascending chain of ideals in R. Then $I = \bigcup_i I_i$ is an ideal of R.

2. Ascending Chain Condition for a PID: Let D be a PID. Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of ideals. Then there is a positive number N such that $I_n = I_N$ for all $n \geq N$.
Proof of PID \Rightarrow UFD, first part

Claim. Every nonzero non-unit element a has an irreducible factor.

1. Assume that a is not an irreducible.
2. Then we have $a = a_1 b_1$, where neither a_1 nor b_1 is a unit. This implies that $\langle a \rangle \subsetneq \langle a_1 \rangle$.
3. If a_1 is not an irreducible, then $a_1 = a_2 b_2$ for some non-unit a_2 and b_2, and we have $\langle a_1 \rangle \subsetneq \langle a_2 \rangle$.
4. Continuing this way, we obtain a strictly ascending chain of ideals $\langle a \rangle \subsetneq \langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \cdots$.
5. By ACC, this chain of ideals cannot go on forever.
6. Therefore, at some point a_n must be an irreducible.
Claim. Every nonzero non-unit element a is a product of irreducibles.

1. Assume that a is not an irreducible. Then a has an irreducible factor, say, $a = p_1 a_1$ for some irreducible p_1 and a_1 is not a unit. Then $\langle a \rangle \subsetneq \langle a_1 \rangle$.

2. If a_1 is an irreducible, we are done; otherwise, $a_1 = p_2 a_2$ for some irreducible p_2 and some non-unit a_2. We have $\langle a \rangle \subsetneq \langle a_1 \rangle \subsetneq \langle a_2 \rangle$.

3. Continuing this way, we obtain a strictly ascending chain of ideals $\langle a \rangle \subsetneq \langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \cdots$.

4. By ACC, this process terminates at some point, i.e., $a = p_1 \cdots p_r$, where p_i are all irreducibles.
Proof of PID ⇒ UFD, second part

We have seen that every nonzero non-unit element is a product of irreducibles. We now show the uniqueness.

1. Assume that $a = p_1 \ldots p_r$ and $a = q_1 \ldots q_s$ are two factorizations into products of irreducibles.
2. Then p_1 divides one of q_i. By rearranging the index, we assume that $p_1 \mid q_1$.
3. Then $q_1 = p_1 u_1$ for some $u_1 \in D$. Since q_1 is an irreducible, u_1 must be a unit. That is, p_1 and q_1 are associates.
4. We then have $p_2 \ldots p_r = u_1 q_2 \ldots q_s$.
5. Applying the same argument to p_2, we find $q_2 = p_2 u_2$ for some unit u_2, and $p_3 \ldots p_r = u_1 u_2 q_3 \ldots q_s$.
6. Continuing this way, we find $r = s$ and p_i are associates of q_i for each i. \qed