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Goals
• For a given lattice L in C, the complex torus C/L is an

elliptic curve.
• Let E(L) be the field of elliptic functions for L. Then

E(L) = C(℘, ℘′).

• The associated Weierstrass ℘-function and its derivative ℘′

give a bijection from C/L to the elliptic curve

(℘′(z))2 = 4℘(z)3 − g2(L)℘(z)− g3(L),

for some computable constants g2(L) and g3(L).
• Every complex elliptic curve can be identified with a

complex torus.
• For a given elliptic curve with the equation

y2 = 4x3 − ax − b, a3 − 27b2 6= 0,

there exists a lattice L in C such that a = g2(L) and
b = g3(L).



Elliptic Functions

Definitions. Let L = Zω1 + Zω2 be a lattice in C.
• The parallelogram

ΠL := {aω1 + bω2 : 0 ≤ a ≤ 1,0 ≤ b ≤ 1}

is called a fundamental parallelogram for ω1 and ω2.
• An elliptic function with respect to L if

• f (z) is meromorphic on C,
• f (z + ω) = f (z) for all ω ∈ L.

We call any element in L a period.
Facts. The set E(L) of all elliptic functions for a lattice L is a
field and is closed under differentiation.



Some Properties

Proposition I.4.3. If an elliptic function f has no pole in some
fundamental parallelogram, f is a constant.

Proposition I.4.4. For a given lattice L, let f ∈ E(L). If f has no
poles on the boundary of P := α + ΠL for some α ∈ C, the sum
of the residues of f in P is zero.

Collary.
• Theorem. Every non-constant elliptic function has at least

two poles in a fundamental parallelogram, counting
multiplicities.
• Proposition I.4.5. For a given lattice L, let f ∈ E(L). If f

has no poles or zeros on the boundary of P := α + ΠL for
some α ∈ C, then the number of zeros of f in P is equal to
the number of poles, each counted with multiplicity.



Proofs

Proposition I.4.3. If an elliptic function f has no pole in some
fundamental parallelogram, f is a constant.

Ideas of the proof. By periodicity and Liouville’s theorem.

Liouville’s Theorem. A bounded entire function is constant.



Proofs

Proposition I.4.4. For a given lattice L, let f ∈ E(L). If f has no
poles on the boundary of P := α + ΠL for some α ∈ C, the sum
of the residues of f in P is zero.

Ideas of the proof. By Cauchy’s residue theorem:∑
w∈P

resf (w) =
1

2πi

∮
∂P

f (z)dz = 0.



Proofs

Collary.
• Theorem. Every non-constant elliptic function has at least

two poles in a fundamental parallelogram, counting
multiplitities.
• Proposition I.4.5. For a given lattice L, let f ∈ E(L). If f

has no poles or zeros on the boundary of P := α + ΠL for
some α ∈ C, then the number of zeros of f in P is equal to
the number of poles, each counted with multiplicity.

Ideas of the proofs. By Proposition I.4.4 and the property....
• the residue of a meromorphic function f at an isolated

singularity a is the coefficient a−1 of the Laurent series of f
at a.
•
∑

w∈P res f ′
f

(w) = #{ zeros in P} −#{poles in P}.



Constrution of Elliptic Functions
Lemmas. Let L be a lattice in C.
• If s is real, the series ∑

ω∈L−{0}

1
ωs

converges absolutely if, and only if, s > 2.
• If s > 2 and R > 0, the series∑

|ω|>R

1
(z − ω)s

converges absolutely and uniformly in the disk |z| ≤ R.
Theorem. Let f be defined by the series

f (z) =
∑
ω∈L

1
(z − ω)3 .

Then f ∈ E(L) and f has a pole of order 3 at each period ω ∈ L.



Weierstrass ℘-function

Definition. Let L be a lattice in C. The Weierstrass ℘-function
is defined by the series

℘(z) = ℘(z; L) :=
1
z2 +

∑
ω∈L−{0}

[
1

(z − ω)2 −
1
ω2

]
.

Proposition I.4.6. The double series∑
ω∈L−{0}

[
1

(z − ω)2 −
1
ω2

]

converges absolutely and uniformly for z in any compact subset
of C− L.

Proposition I.4.7. ℘(z) ∈ E(L), and its only pole is a double
pole at each period ω ∈ L. Moreover, ℘(z) is an even function.



The Field of Elliptic Functions
Proposition I.5.9. Let f ∈ E(L). If f is an even function, then
f ∈ C(℘).

Ideas.
• if f has a zero (or pole) of order m at z0, then it has a zero

(or pole) of order m at −z0.
• if z0 ≡ −z0 mod L , then the order m must be even.
• Choose a set of representatives mod L for the zeros and

poles of f not in L to be
{z1, . . . , zk ,−z1, . . . ,−zk , zk+1, . . . , zn} such that

zi 6≡ −zi , 1 ≤ i ≤ k , zi ≡ −zi 6≡ 0, k < i ≤ n.

• Let mi be the order of f at zi . The function

g(z) :=
k∏

i=1

(℘(z)− ℘(zi))mi

n∏
i=k+1

(℘(z)− ℘(zi))mi/2

and f (z) have exactly the same zeros and poles.
Proposition I.5.8. E(L) = C(℘, ℘′).



The Laurent Expansion of ℘ near 0

Proposition. Let r = min{|ω| : ω ∈ L− {0}}. Then for z such
that 0 < |z| < r we have

℘(z) =
1
z2 +

∞∑
n=1

(2n + 1)G2n+2(L)z2n,

where Gn(L) :=
∑
ω 6=0

1
ωn , for n ≥ 3.

Idea. [
1

(z − ω)2 −
1
ω2

]
=

1
ω2

[
1

(1− z/ω)2 − 1
]



Differential Equation Satisfied by ℘

Proposition. The functions ℘ and ℘′ satisfy the relation

(℘′(z))2 = 4℘(z)3 − g2(L)℘(z)− g3(L),

where g2(L) = 60G4(L) and g3(L) = 140G6(L).

Idea. Comparing the expansions

℘(z) =z−2 + 3G4(L)z2 + 5G6(L)z4 + · · ·
℘′(z) =− 2z−3 + 6G4(L)z + 20G6(L)z3 + · · · ,

we obtain that

(℘′(z))2−4℘(z)3+60G4(L)℘(z) = −140G6(L)+108G4(L)2z2+· · ·



Complex Tori as Elliptic Curves ?

Proposition. Let L = Zω1 + Zω2 and set ω3 = ω1 + ω2. Then
the cubic equation satisfied by ℘ and ℘′, is

y2 = 4x3 − g2(L)x − g3(L)

= 4(x − e1)(x − e2)(x − e3), ei = ℘(ωi/2).

This equation is nonsingular.

Proposition I.6.10. For a given lattice L in C, there is a (an
analytic) bijection between the complex trous C/L and the
elliptic curve y2 = 4x3 − g2(L)x − g3(L) in P2(C).
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