Elliptic Functions and Complex Tori

[Koblitz]: 1.4-6



Goals

e For a given lattice L in C, the complex torus C/L is an
elliptic curve.

e Let £(L) be the field of elliptic functions for L. Then

&(L) =C(p, ).

e The associated Weierstrass g-function and its derivative ¢’
give a bijection from C/L to the elliptic curve

(¢'(2))? = 40(2)° — g2(L)p(2) — ga(L),

for some computable constants g»(L) and gs(L).

e Every complex elliptic curve can be identified with a
complex torus.

e For a given elliptic curve with the equation
y2=4x3—ax—b, a —27b%+#0,

there exists a lattice L in C such that a = g»(L) and
b= gs(L).



Elliptic Functions

Definitions. Let L = Zwq + Zw, be a lattice in C.
e The parallelogram

M ={awi +bw:0<a<1,0<b< 1}

is called a fundamental parallelogram for w1 and wo.
¢ An elliptic function with respect to L if

e f(z) is meromorphic on C,
o f(z+w)="f(z)forallw e L.

We call any element in L a period.

Facts. The set £(L) of all elliptic functions for a lattice L is a
field and is closed under differentiation.



Some Properties

Proposition 1.4.3. If an elliptic function f has no pole in some
fundamental parallelogram, f is a constant.

Proposition 1.4.4. For a given lattice L, let f € £(L). If f has no
poles on the boundary of P := « + I, for some a € C, the sum
of the residues of f in P is zero.

Collary.

e Theorem. Every non-constant elliptic function has at least
two poles in a fundamental parallelogram, counting
multiplicities.

e Proposition 1.4.5. For a given lattice L, let f € £(L). If f
has no poles or zeros on the boundary of P := « + N, for
some a € C, then the number of zeros of f in P is equal to
the number of poles, each counted with multiplicity.



Proofs

Proposition 1.4.3. If an elliptic function f has no pole in some
fundamental parallelogram, f is a constant.

Ideas of the proof. By periodicity and Liouville’s theorem.
Liouville’s Theorem. A bounded entire function is constant.



Proofs

Proposition 1.4.4. For a given lattice L, let f € £(L). If f has no
poles on the boundary of P := « + I, for some « € C, the sum

of the residues of fin P is zero.
Ideas of the proof. By Cauchy’s residue theorem:

> resq(w Z:r/f f(z)dz = 0.



Proofs

Collary.

e Theorem. Every non-constant elliptic function has at least
two poles in a fundamental parallelogram, counting
multiplitities.

e Proposition 1.4.5. For a given lattice L, let f € £(L). If f
has no poles or zeros on the boundary of P := « + N, for
some a € C, then the number of zeros of f in P is equal to
the number of poles, each counted with multiplicity.

Ideas of the proofs. By Proposition 1.4.4 and the property....

¢ the residue of a meromorphic function f at an isolated
singularity a is the coefficient a_; of the Laurent series of f
at a.

> ep resé(w) = #{ zeros in P} — #{ poles in P}.



Constrution of Elliptic Functions
Lemmas. Let L be a lattice in C.
e If sis real, the series

1
> s
wel—{0}

converges absolutely if, and only if, s > 2.
e If s>2and R > 0, the series

converges absolutely and uniformly in the disk |z| < R.
Theorem. Let f be defined by the series

’
f(z) = ZL(z—w)?’

Then f € £(L) and f has a pole of order 3 at each period w € L.



Weierstrass p-function

Definition. Let L be a lattice in C. The Weierstrass g-function
is defined by the series

o(2) = p(z; L) ::%+ > [(Z1w)2—w2]

wel—{0}

Proposition 1.4.6. The double series

Z { 1 1 }
— )2 2

el (0} (z —w) w

converges absolutely and uniformly for z in any compact subset
of C — L.

Proposition 1.4.7. p(z) € £(L), and its only pole is a double
pole at each period w € L. Moreover, p(z) is an even function.



The Field of Elliptic Functions
Proposition 1.5.9. Let f € £(L). If f is an even function, then
f e C(p).

Ideas.
e if f has a zero (or pole) of order m at zy, then it has a zero
(or pole) of order m at —2z.
e if zg = -2y mod L, then the order m must be even.
e Choose a set of representatives mod L for the zeros and
poles of f not in L to be
{21,.. . ,Zk,—Z1,...,—Zk,Zk+1,...,Zn} such that

ziZ-z,1<i<k, z=-zZ0k<i<n

e Let m; be the order of f at z;. The function

k n
9(2) = [[(0(2) = @)™ T] (p(2) - p(2:))™"
i=1 i=k-+1

and f(z) have exactly the same zeros and poles.
Proposition 1.5.8. £(L) = C(gp, ¢').



The Laurent Expansion of p near 0

Proposition. Let r = min{|w| : w € L — {0}}. Then for z such
that 0 < |z| < r we have

1 o0
- Z (20 +1)Gapya(L)22",

where Gy(L) := Z ln for n > 3.
w#0 w
Idea.

e R [



Differential Equation Satisfied by ¢

Proposition. The functions p and ¢’ satisfy the relation

(¢'(2))? = 49(2)° — ga(L)p(2) — g3(L),
where go(L) = 60G4(L) and gs(L) = 140Gg(L).
Idea. Comparing the expansions

0(2) =272 + 3G4(L) 22 + 5Ge(L)2* + - -
¢/(2) = — 2273+ 6G4(L)z + 20G(L)Z* + - - - ,

we obtain that

(¢(2))—4p(2)°+60G4(L)p(2) = —140Gs(L)+108G4(L)2 2%+ - -



Complex Tori as Elliptic Curves ?

Proposition. Let L = Zwq + Zw, and set w3 = wq + wo. Then
the cubic equation satisfied by p and ¢, is

y? = 4x% — go(L)x — gs(L)
=4(x —e)(x — e)(x — e3), & =p(wi/2).
This equation is nonsingular.

Proposition 1.6.10. For a given lattice L in C, there is a (an
analytic) bijection between the complex trous C/L and the
elliptic curve y? = 4x3 — go(L)x — ga(L) in P?(C).



	Introduction
	Elliptic Functions
	Constrution of Elliptic Functions
	Complex Tori as Elliptic Curves

