Elliptic Functions and Complex Tori

Goals

- For a given lattice L in \mathbb{C}, the complex torus C / L is an elliptic curve.
- Let $\mathcal{E}(L)$ be the field of elliptic functions for L. Then

$$
\mathcal{E}(L)=\mathbb{C}\left(\wp, \wp^{\prime}\right) .
$$

- The associated Weierstrass \wp-function and its derivative \wp^{\prime} give a bijection from \mathbb{C} / L to the elliptic curve

$$
\left(\wp^{\prime}(z)\right)^{2}=4 \wp(z)^{3}-g_{2}(L) \wp(z)-g_{3}(L)
$$

for some computable constants $g_{2}(L)$ and $g_{3}(L)$.

- Every complex elliptic curve can be identified with a complex torus.
- For a given elliptic curve with the equation

$$
y^{2}=4 x^{3}-a x-b, \quad a^{3}-27 b^{2} \neq 0
$$

there exists a lattice L in \mathbb{C} such that $a=g_{2}(L)$ and $b=g_{3}(L)$.

Elliptic Functions

Definitions. Let $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ be a lattice in \mathbb{C}.

- The parallelogram

$$
\Pi_{L}:=\left\{a \omega_{1}+b \omega_{2}: 0 \leq a \leq 1,0 \leq b \leq 1\right\}
$$

is called a fundamental parallelogram for ω_{1} and ω_{2}.

- An elliptic function with respect to L if
- $f(z)$ is meromorphic on \mathbb{C},
- $f(z+\omega)=f(z)$ for all $\omega \in L$.

We call any element in L a period.
Facts. The set $\mathcal{E}(L)$ of all elliptic functions for a lattice L is a field and is closed under differentiation.

Some Properties

Proposition I.4.3. If an elliptic function f has no pole in some fundamental parallelogram, f is a constant.
Proposition I.4.4. For a given lattice L, let $f \in \mathcal{E}(L)$. If f has no poles on the boundary of $P:=\alpha+\Pi_{L}$ for some $\alpha \in \mathbb{C}$, the sum of the residues of f in P is zero.
Collary.

- Theorem. Every non-constant elliptic function has at least two poles in a fundamental parallelogram, counting multiplicities.
- Proposition I.4.5. For a given lattice L, let $f \in \mathcal{E}(L)$. If f has no poles or zeros on the boundary of $P:=\alpha+\Pi_{L}$ for some $\alpha \in \mathbb{C}$, then the number of zeros of f in P is equal to the number of poles, each counted with multiplicity.

Proofs

Proposition I.4.3. If an elliptic function f has no pole in some fundamental parallelogram, f is a constant.

Ideas of the proof. By periodicity and Liouville's theorem.
Liouville's Theorem. A bounded entire function is constant.

Proofs

Proposition I.4.4. For a given lattice L, let $f \in \mathcal{E}(L)$. If f has no poles on the boundary of $P:=\alpha+\Pi_{L}$ for some $\alpha \in \mathbb{C}$, the sum of the residues of f in P is zero.
Ideas of the proof. By Cauchy's residue theorem:

$$
\sum_{w \in P} \operatorname{res}_{f}(w)=\frac{1}{2 \pi i} \oint_{\partial P} f(z) d z=0 .
$$

Proofs

Collary.

- Theorem. Every non-constant elliptic function has at least two poles in a fundamental parallelogram, counting multiplitities.
- Proposition l.4.5. For a given lattice L, let $f \in \mathcal{E}(L)$. If f has no poles or zeros on the boundary of $P:=\alpha+\Pi_{L}$ for some $\alpha \in \mathbb{C}$, then the number of zeros of f in P is equal to the number of poles, each counted with multiplicity.

Ideas of the proofs. By Proposition I.4.4 and the property....

- the residue of a meromorphic function f at an isolated singularity a is the coefficient a_{-1} of the Laurent series of f at a.
- $\sum_{w \in P}$ res $_{\frac{t^{\prime}}{f}}(w)=\#\{$ zeros in $P\}-\#\{$ poles in $P\}$.

Constrution of Elliptic Functions

Lemmas. Let L be a lattice in \mathbb{C}.

- If s is real, the series

$$
\sum_{\omega \in L-\{0\}} \frac{1}{\omega^{s}}
$$

converges absolutely if, and only if, $s>2$.

- If $s>2$ and $R>0$, the series

$$
\sum_{|\omega|>R} \frac{1}{(z-\omega)^{s}}
$$

converges absolutely and uniformly in the disk $|z| \leq R$.
Theorem. Let f be defined by the series

$$
f(z)=\sum_{\omega \in L} \frac{1}{(z-\omega)^{3}}
$$

Then $f \in \mathcal{E}(L)$ and f has a pole of order 3 at each period $\omega \in L$.

Weierstrass \wp-function

Definition. Let L be a lattice in \mathbb{C}. The Weierstrass $\varsigma-$-function is defined by the series

$$
\wp(z)=\wp(z ; L):=\frac{1}{z^{2}}+\sum_{\omega \in L-\{0\}}\left[\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right] .
$$

Proposition I.4.6. The double series

$$
\sum_{\omega \in L-\{0\}}\left[\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right]
$$

converges absolutely and uniformly for z in any compact subset of $\mathbb{C}-L$.
Proposition I.4.7. $\wp(z) \in \mathcal{E}(L)$, and its only pole is a double pole at each period $\omega \in L$. Moreover, $\wp(z)$ is an even function.

The Field of Elliptic Functions

Proposition I.5.9. Let $f \in \mathcal{E}(L)$. If f is an even function, then
$f \in \mathbb{C}(\wp)$.

Ideas.

- if f has a zero (or pole) of order m at z_{0}, then it has a zero (or pole) of order m at $-z_{0}$.
- if $z_{0} \equiv-z_{0} \bmod L$, then the order m must be even.
- Choose a set of representatives $\bmod L$ for the zeros and poles of f not in L to be
$\left\{z_{1}, \ldots, z_{k},-z_{1}, \ldots,-z_{k}, z_{k+1}, \ldots, z_{n}\right\}$ such that

$$
z_{i} \not \equiv-z_{i}, 1 \leq i \leq k, \quad z_{i} \equiv-z_{i} \not \equiv 0, k<i \leq n .
$$

- Let m_{i} be the order of f at z_{i}. The function

$$
g(z):=\prod_{i=1}^{k}\left(\wp(z)-\wp\left(z_{i}\right)\right)^{m_{i}} \prod_{i=k+1}^{n}\left(\wp(z)-\wp\left(z_{i}\right)\right)^{m_{i} / 2}
$$

and $f(z)$ have exactly the same zeros and poles.
Proposition I.5.8. $\mathcal{E}(L)=\mathbb{C}\left(\wp, \wp^{\prime}\right)$.

The Laurent Expansion of \wp near 0

Proposition. Let $r=\min \{|\omega|: \omega \in L-\{0\}\}$. Then for z such that $0<|z|<r$ we have

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{n=1}^{\infty}(2 n+1) G_{2 n+2}(L) z^{2 n}
$$

where $G_{n}(L):=\sum_{\omega \neq 0} \frac{1}{\omega^{n}}$, for $n \geq 3$.
Idea.

$$
\left[\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right]=\frac{1}{\omega^{2}}\left[\frac{1}{(1-z / \omega)^{2}}-1\right]
$$

Differential Equation Satisfied by \wp

Proposition. The functions \wp and \wp^{\prime} satisfy the relation

$$
\left(\wp^{\prime}(z)\right)^{2}=4 \wp(z)^{3}-g_{2}(L) \wp(z)-g_{3}(L),
$$

where $g_{2}(L)=60 G_{4}(L)$ and $g_{3}(L)=140 G_{6}(L)$.
Idea. Comparing the expansions

$$
\begin{aligned}
\wp(z) & =z^{-2}+3 G_{4}(L) z^{2}+5 G_{6}(L) z^{4}+\cdots \\
\wp^{\prime}(z) & =-2 z^{-3}+6 G_{4}(L) z+20 G_{6}(L) z^{3}+\cdots,
\end{aligned}
$$

we obtain that
$\left(\wp^{\prime}(z)\right)^{2}-4 \wp(z)^{3}+60 G_{4}(L) \wp(z)=-140 G_{6}(L)+108 G_{4}(L)^{2} z^{2}+\cdots$

Complex Tori as Elliptic Curves ?

Proposition. Let $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ and set $\omega_{3}=\omega_{1}+\omega_{2}$. Then the cubic equation satisfied by \wp and \wp^{\prime}, is

$$
\begin{aligned}
y^{2} & =4 x^{3}-g_{2}(L) x-g_{3}(L) \\
& =4\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right), \quad e_{i}=\wp\left(\omega_{i} / 2\right) .
\end{aligned}
$$

This equation is nonsingular.
Proposition I.6.10. For a given lattice L in \mathbb{C}, there is a (an analytic) bijection between the complex trous \mathbb{C} / L and the elliptic curve $y^{2}=4 x^{3}-g_{2}(L) x-g_{3}(L)$ in $\mathbb{P}^{2}(\mathbb{C})$.

