Complex Tori, Elliptic Curves as Riemann Surfaces

Riemann Surface

A second-countable Hausdorff topological space together with a complex structure is a Riemann surface.

Let *M* be a one-dimensional connected complex manifold. A coordinate chart (U, z) is an open subset *U* of *M*, together with a homeomorphism $z : U \mapsto \mathbb{C}$ onto an open subset of \mathbb{C} .

A Riemann surface is a one-dimensional connected complex manifold *M* with a set of coordinate charts $\{(U_{\alpha}, z_{\alpha})\}_{\alpha \in I}$, where *I* is an index set, such that

- $\{U_{\alpha}\}_{\alpha \in I}$ forms an open cover of *M*,
- the transition functions

$$w_{\alpha\beta} = z_{\alpha} \circ z_{\beta}^{-1} : z_{\beta}(U_{\alpha} \cap U_{\beta}) \mapsto z_{\alpha}(U_{\alpha} \cap U_{\beta})$$

are holomorphic whenever $U_{\alpha} \cap U_{\beta} \neq \phi$.

Examples

The followings are Riemann surfaces.

- The complex plane \mathbb{C} , the upper half plane \mathbb{H} , the Riemann sphere $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.
- The complex projective line P¹(C). We can choose the local charts to be (U₁, f₁), (U₂, f₂), where

$$U_1 = \{[x, y] : x \neq 0\}, \quad f_1([x : y]) = y/x,$$

$$U_2 = \{ [x:y] : y \neq 0 \}, \quad f_2([x:y]) = x/y.$$

The complex torus. Let L = Zω₁ + Zω₂ be a lattice in C. Let A = {aω₁ + bω₂ : 0 ≤ a, b < 1} be a complete set of coset representatives of C/L. Let r = min{|ω₁|/2, |ω₂|/2}. For α ∈ A set U_α = {z + L : |z − α| < r}. Then C/L is a Riemann surface with charts {U_α, z_α}_{α∈A}. • Let X and Y be two Riemann surfaces. A continuous mapping $f : X \mapsto Y$ is called holomorphic if for every local coordinate (U, z) on X and every local coordinate (V, ζ) on Y with $U \cap f^{-1}(V) \neq \phi$, the mapping

$$\zeta \circ f \circ z^{-1} : z(U \cap f^{-1}(V)) \mapsto \zeta(V)$$

is holomorphic.

 An isomorphism of Riemann surfaces is a bijective holomorphic map whose inverse is also holomorphic. Proposition I.6.10. For a given lattice *L* in \mathbb{C} , we let *E*_{*L*} to be the elliptic curve

$$Y^2 Z = 4X^3 - g_2(L)XZ^2 - g_3(L)Z^3.$$

The map

$$z + L \longmapsto \begin{cases} [\wp(z), \wp'(z), 1], & \text{if } z \neq 0, \\ [0, 1, 0], & \text{if } z = 0. \end{cases}$$

is an isomorphism of Riemann surfaces \mathbb{C}/L and $E_L(\mathbb{C})$.

Theorem. Every elliptic curve *E* over \mathbb{C} is isomorphic to E_L for some lattice *L*.

Holomorphic Maps Bewteen Complex Tori

Let *L* and *L'* be two lattices in \mathbb{C} . **Proposition.** Let $\phi : \mathbb{C}/L \longrightarrow \mathbb{C}/L'$ be a holomorphic map. Then there exist *a*, $b \in \mathbb{C}$ with $aL \subseteq L'$ such that

$$\phi(z+L)=az+b+L'.$$

The map is invertibel if and only if aL = L'.

Corollary. Let $\phi : \mathbb{C}/L \longrightarrow \mathbb{C}/L'$ be a holomorphic map, which is given by $\phi(z + L) = az + b + L'$, $aL \subseteq L'$. Then the following are equivalent:

- ϕ is a group homomorphism.
- $\phi(0) = 0$
- $\phi(z+L) = az + L'$.

Isogeny. A nonzero holomorphic homomorphism bewteen complex tori is called an isogeny.

Corollary. The Riemann surfaces \mathbb{C}/L and \mathbb{C}/L' are isomorphic if and only if aL = L' for some $a \in \mathbb{C}^{\times}$.

Notations/Definitions.

• For $n \ge 3$, define $G_n(L) := \sum_{\omega \neq 0} \frac{1}{\omega^n}$, and

 $G_n(\tau) := G_n(\mathbb{Z}\tau + \mathbb{Z})$ with $\tau \in \mathbb{H}$. The functions $G_n(L)$ and $G_n(\tau)$ are called Eisenstein series.

- The function Δ(L) := g₂(L)³ 27g₃(L)² is called the discriminant of the elliptic curve
 E_L : y² = 4x³ - g₂(L)x - g₃(L).
- The function $j(L) := 1728g_2(L)^3/\Delta(L)$ is called the elliptic *j*-invariant.

Theorem. Every elliptic curve *E* over \mathbb{C} is isomorphic to E_L for some lattice *L*.

It is known that every compact Riemann surface X can be decomposed into triangles such that two triangles either do not intersect or share a common vertex or a common edge.

Definitions. Denote V the number of vertices, E the number of edges, and F the number of faces.

• The number

$$\chi(X) := V - E + F$$

is an invariant and is called the Euler characteristic of X.

• Let g be the integer satisfying

$$\chi = \mathbf{2} - \mathbf{2}\mathbf{g}.$$

This number g is called the genus of X, and can be interpreted as the number of "holes" of X.

Example

- The genus of $\mathbb{P}^1(\mathbb{C})$ is 0.
- The genus of a complex torus is 1.

Holomorphic and meromorphic functions Let X and Y be two Riemann surfaces. Definitions.

Let X and Y be two Riemann surfaces. A continuous mapping f : X → Y is called holomorphic if for every local coordinate (U, z) on X and every local coordinate (V, ζ) on Y with U ∩ f⁻¹(V) ≠ φ, the mapping

$$\zeta \circ f \circ z^{-1} : z(U \cap f^{-1}(V)) \mapsto \zeta(V)$$

is holomorphic.

- A holomorphic mapping into C is called a holomorphic function. A holomorphic mapping into P¹(C) is called a meromorphic function.
- A function f : U → P¹(C) is called meromorphic if it is holomorphic at every point where it has a finite value, whereas, near every point z₀ with f(z₀) = ∞, f(z) = φ(z)/(z z₀)ⁿ for some holomorphic function φ, defined and non-zero around z₀. The positive number *n* is the order of the pole at z₀.