Suggested Exercises

Total: $4+13+4=21$ questions.
Koblitz Section I.5: 2(a,b,c), 4
Koblitz Section I.6: $1(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}), 4,6,11$ (c,d), 12(a,b), 13, 14(b,c)
Let E_{1}, E_{2} be elliptic curves defined over \mathbb{C} (simply viewed as complex tori). Denote $\operatorname{Hom}\left(E_{1}, E_{2}\right)$ the ring of isogenies from E_{1} to E_{2}, and $\operatorname{End}(E)$ the ring of endomorphisms of the elliptic curve E :

$$
\operatorname{End}(E):=\operatorname{Hom}(E, E)=\{\text { isogenies from } E \text { to } E\}
$$

(1) Show that $\operatorname{End}(E)$ contains \mathbb{Z}.
(2) Let $L=\mathbb{Z} \tau+\mathbb{Z}$ be a lattice in \mathbb{C} with $\tau \in \mathbb{H}$. Show that $\operatorname{End}(\mathbb{C} / L)$ is \mathbb{Z} unless $[\mathbb{Q}(\tau): \mathbb{Q}]=2$, in which case it is a subring of $\mathbb{Q}(\tau)$ of rank 2 as a \mathbb{Z}-module.
In the case $\operatorname{End}(E) \neq \mathbb{Z}$, we say that E has complex multiplication.
Let $\phi \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$. The degree of ϕ can be defined as

$$
\operatorname{deg}(\phi):=|\operatorname{ker} \phi| .
$$

For a given positive integer d and a fixed elliptic curve \mathbb{C} / L, let
$N_{d}:=\#\left(\left\{\mathbb{C} / L^{\prime}:\right.\right.$ there exists an isogeny $\mathbb{C} / L^{\prime} \longrightarrow \mathbb{C} / L$ of degree $\left.\left.d\right\} / \simeq\right)$.
(3) Show that

$$
N_{d}=\#\left\{L^{\prime}: L^{\prime} \leq L,\left[L: L^{\prime}\right]=d\right\}
$$

(4) Show that $N_{d}=\sum_{n \mid d} n$, i.e, $N_{d}=\sigma(d)$.

