Suggested Exercises

Total: 4+13+4=21 questions.

Koblitz Section I.5: 2(a,b,c), 4 Koblitz Section I.6: 1(a,b,c,d), 4, 6, 11 (c,d), 12(a,b), 13, 14(b,c)

Let E_1 , E_2 be elliptic curves defined over \mathbb{C} (simply viewed as complex tori). Denote $\text{Hom}(E_1, E_2)$ the ring of isogenies from E_1 to E_2 , and End(E) the ring of endomorphisms of the elliptic curve E:

 $\operatorname{End}(E) := \operatorname{Hom}(E, E) = \{ \text{ isogenies from } E \text{ to } E \}.$

- (1) Show that $\operatorname{End}(E)$ contains \mathbb{Z} .
- (2) Let $L = \mathbb{Z}\tau + \mathbb{Z}$ be a lattice in \mathbb{C} with $\tau \in \mathbb{H}$. Show that $\operatorname{End}(\mathbb{C}/L)$ is \mathbb{Z} unless $[\mathbb{Q}(\tau) : \mathbb{Q}] = 2$, in which case it is a subring of $\mathbb{Q}(\tau)$ of rank 2 as a \mathbb{Z} -module.

In the case $\operatorname{End}(E) \neq \mathbb{Z}$, we say that *E* has *complex multiplication*.

Let $\phi \in \text{Hom}(E_1, E_2)$. The degree of ϕ can be defined as

 $\deg(\phi) := |\ker \phi|.$

For a given positive integer d and a fixed elliptic curve \mathbb{C}/L , let

 $N_d := \# \left(\{ \mathbb{C}/L' : \text{ there exists an isogeny } \mathbb{C}/L' \longrightarrow \mathbb{C}/L \text{ of degree } d \}/\simeq \right).$

(3) Show that

$$N_d = \#\{L' : L' \le L, \ [L : L'] = d\}.$$

(4) Show that
$$N_d = \sum_{n|d} n$$
, i.e, $N_d = \sigma(d)$.