The Hasse-Weil *L*-Function of an Elliptic Curve

[Koblitz]: II

The Congruence Zeta-Function (Local Zeta Function)

Set $q = p^k$, for some prime *p*. The notation \mathbb{F}_q stands for the finite field with *q* elements.

Definition. Let *C* be a projective plane curve defined over \mathbb{F}_q . The zeta function of *C* over \mathbb{F}_q is given by the formal power series

$$Z(C/\mathbb{F}_q;T) := \exp\left(\sum_{r=1}^{\infty} (\#C(\mathbb{F}_{q^r})) \frac{T^r}{r}
ight),$$

where

$$\exp(u) = \sum_{k=0}^{\infty} \frac{u^k}{k!}.$$

The Congruence Zeta-Function (Local Zeta Function)

Proposition. Let *E* be an elliptic curve defined over \mathbb{F}_q . There is an integer a_E such that

$$Z(E/\mathbb{F}_q; T) = \frac{1 - a_E T + qT^2}{(1 - T)(1 - qT)} = \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)},$$

and the roots have the property $|\alpha| = |\beta| = \sqrt{q}$. Furthermore

$$Z(E/\mathbb{F}_q;T)=Z(E/\mathbb{F}_q;1/(qT)).$$

Hasse-Weil L-Fucntions

Let *E* be an elliptic curve defined over \mathbb{Q} . We make substitution $T = p^{-s}$ in $Z(E/\mathbb{F}_p; T)$, and define Hasse-Weil *L*-series L(E, s) by

$$L(E,s) = rac{\zeta(s)\zeta(s-1)}{\prod_{
ho} Z(E/\mathbb{F}_{
ho};
ho^{-s})},$$

where $\zeta(s)$ is the *Riemann zeta function* defined by

$$\zeta(s) = \sum_{n \in \mathbb{N}} \frac{1}{n^s}$$
, for $Re(s) > 1$

and we can express $\zeta(s)$ as $\zeta(s) = \prod_{primes p} \frac{1}{1 - p^{-s}}$. Thus, we

have

$$L(E, s) = * \prod_{p:good} \frac{1}{1 - a_p p^{-s} + p^{1-2s}}.$$

Reduction

Let E be an elliptic curve defined over $\mathbb Q$ given by a Weierstrass equation

$$E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

The reduction of *E* modulo *p*, denoted \tilde{E} , is the curve over \mathbb{F}_p defined by the equation

$$\widetilde{E}: y^2 + \widetilde{a_1}xy + \widetilde{a_3}y = x^3 + \widetilde{a_2}x^2 + \widetilde{a_4}x + \widetilde{a_6},$$

where \tilde{a}_i denotes reduction modulo *p*. (The curve \tilde{E} may be singular).

Definition.We say that

- (1) E has good (stable) reduction if \tilde{E} is non-singular.
- (2) E has multiplicative (semi-stable) reduction if E admits a double point with two distinct tangents. (E has a node.) And the reduction is called *split* if the tangent directions are defined over F_p, otherwise it is *non-split*.
- (3) E has *additive (unstable) reduction* if \tilde{E} admits a double point with only one tangent. (E has a cusp.)

In cases (2) and (3), E is naturally said to have *bad reduction*.

L-Fucntions

For each prime p, if E has good reduction at p, let

$$a_{p} := p + 1 - \# \widetilde{E}(\mathbb{F}_{p}).$$

The local factor of the *L*-series of *E* at *p* is

$$L_p(T) = 1 - a_p T + p T^2.$$

We extend the definition of $L_p(T)$ to the case that *E* has bad reduction by setting

 $L_{p}(T) = \begin{cases} 1 - T, & \text{if } E \text{ has split multiplicicative reduction at } p, \\ 1 + T, & \text{if } E \text{ has non-split multiplicicative reduction at } p, \\ 1, & \text{if } E \text{ has additive reduction at } p. \end{cases}$

Definition. We define the *L*-function of the elliptic curve by

$$L(E/\mathbb{Q},s)=\prod_{\rho}L_{\rho}(\rho^{-s})^{-1}.$$

Conductor of E/\mathbb{Q}

Let *E* be an elliptic curve defined over \mathbb{Q} . For each prime *p*, we define

$$f_p(E/\mathbb{Q}) = \begin{cases} 0, & ext{if } E ext{ has good reduction at } p, \\ 1, & ext{if } E ext{ has multiplicicative reduction at } p, \\ 2 + \delta_p, & ext{if } E ext{ has additive reduction at } p, \end{cases}$$

where $\delta_p = 0$ if $p \nmid 6$. The invariant δ_p may be computed using Ogg's formula in "Elliptic curves and wild ramification".

The conductor of *E* is defined to be

$$N_E := \prod_{\rho} \rho^{f_{
ho}}$$

Remark. The minimal discriminant is a measure of the bad reduction of *E*. Another such measure is the conductor of E/\mathbb{Q} .

As an application of Modularity Theorem...

Functional Equation of L(E, s). Let *E* be an elliptic curve defined over \mathbb{Q} with conductor N_E . The *L*-function L(E, s) can be extended analytically to an entire fuction on the whole complex *s*-plane. Define

$$\Lambda(s) := \left(rac{\sqrt{N_E}}{2\pi}
ight)^s \Gamma(s) L(E,s),$$

where $\Gamma(\cdot)$ is the Gamma function. Then $\Lambda(s)$ satisfies the functional equation

$$\Lambda(s) = \pm \Lambda(2-s).$$

Goal: Zeta-Function of E_n

Let E_n be the elliptic curve E_n : $y^2 = x^3 - n^2 x$. Theorem. Let *p* be a prime with $p \nmid 2n$. Then

$$Z(E_n/\mathbb{F}_p; T) = \frac{1 - a_E T + pT^2}{(1 - T)(1 - pT)} = \frac{(1 - \alpha T)(1 - \overline{\alpha} T)}{(1 - T)(1 - pT)},$$

where

$$\alpha = \begin{cases} i\sqrt{p}, & \text{if } p \equiv 3 \mod 4, \\ a + bi, & \text{if } p \equiv 1 \mod 4, \end{cases}$$

where $a, b \in \mathbb{Z}, a^2 + b^2 = p$ and $a + bi \equiv \left(\frac{n}{p}\right) \mod 2 + 2i$

Counting Points

- Let χ be a group homomorphism from 𝔽[×]_q to ℂ[×]. Usually, we say χ is a multiplicative characters on 𝔽[×]_q.
- Let \mathbb{F}_q^{\times} denote the group of multiplicative characters on \mathbb{F}_q^{\times} .
- Extend $\chi \in \widehat{\mathbb{F}_q^{\times}}$ to \mathbb{F}_q by setting $\chi(\mathbf{0}) = \mathbf{0}$.
- Denote $\overline{\chi}$ the complex conjugation of χ , $\overline{\chi} = \chi^{-1}$.

Lemma. If $a \in \mathbb{F}_q^{\times}$ and $m \mid (q-1)$, then

$$\# \{ \boldsymbol{y} \in \mathbb{F}_{\boldsymbol{q}} : \, \boldsymbol{y}^{m} = \boldsymbol{a} \} = \sum_{\chi^{m} = 1} \chi(\boldsymbol{a}),$$

where the sum runs over all characters $\chi \in \widehat{\mathbb{F}_q^{\times}}$ whose order divides *n*.

Proposition. For any prime power $q = p^r$ with $p \nmid 2n$, we have

$$\#E_n(\mathbb{F}_q) = \begin{cases} 1+q, & \text{if } q \equiv 3 \mod 4\\ 1+q+\chi_2(n) \left(J(\chi_2,\chi_4)+J(\chi_2,\overline{\chi_4})\right), & \text{if } q \equiv 1 \mod 4 \end{cases}$$

where χ_2 is the quadratic character, χ_4 is a character of exact order 4 of \mathbb{F}_a^{\times} , and

$$J(A,B) := \sum_{x \in \mathbb{F}_q} A(x)B(1-x)$$

is the Jacobi sum of the characters A and B.

Remarks.

- The curves E_n : $y^2 = x^3 n^2x$ and C: $y^2 = x^4 + n^2/4$ are \mathbb{Q} -isomorphic (as hyperelliptic curves).
- For a non-singular curve *C* of the form $x^n y^m = d$, we have

$$\#\mathcal{C}(\mathbb{F}_q) \quad "=" \quad 1+q+\sum_{i,j}J(\chi_m^i,\chi_n^j),$$

if $n \mid q - 1$ and $m \mid q - 1$, where χ_k is a character of exact order k of \mathbb{F}_q^{\times} .

Rationality of $Z(E_n)$ – ideas

• For a given character $A \in \widehat{\mathbb{F}_q^{\times}}$, the Gauss sum of A is defined to be

$$g(\mathcal{A}) := \sum_{x \in \mathbb{F}_q^{ imes}} \mathcal{A}(x) \zeta_{
ho}^{\operatorname{Tr}_{\mathbb{F}_p}^{\mathbb{F}_q}(x)}$$

We have the following realtion between Gauss sums and Jacobi sums:

$$J(A,B) = rac{g(A)g(B)}{g(AB)}$$
 if $A
eq \overline{B}$.

Hasse-Davenport Relation. Let F be a finite field and F_s an extension field over F of degree s. If χ ≠ ε ∈ F[×] and χ_s = χ ∘ N_{Fs/F} a character of F_s. Then

$$(-g(\chi))^s = -g(\chi_s).$$

Rationality of $Z(E_n)$ – ideas

• When $p \equiv 1 \mod 4$, let χ_2 be the quadratic character and χ_4 a character of order 4 of \mathbb{F}_p^{\times} . Denote $\alpha = -\chi_2(n)J(\chi_2, \chi_4)$. Then

$$\# E_n(\mathbb{F}_{p^r}) = 1 + p^r - \alpha^r - \overline{\alpha}^r.$$

When p ≡ 3 mod 4, let χ₂ be the quadratic character and χ₄ a character of order 4 of F[×]_{p²}. Denote α = −J(χ₂, χ₄) = −p. Then, for r ≥ 1,

$$#E_n(\mathbb{F}_{p^{2s+1}}) = 1 + p^{2r-1},$$
$$#E_n(\mathbb{F}_{p^{2r}}) = 1 + p^{2r} - \alpha^r - \overline{\alpha}^r$$

$$-\ln(1-x) = \sum_{n\geq 1} \frac{x^n}{n}$$

Reformulate Zeta-Function of *E_n*

Let E_n be the elliptic curve E_n : $y^2 = x^3 - n^2 x$.

• When $p \equiv 1 \mod 4$,

$$(1-T)(1-\rho T)Z(E_n/\mathbb{F}_{\rho};T)=\prod_{(\mathfrak{p})|\rho}(1-\alpha_{\mathfrak{p}}T),$$

where $\alpha_{\mathfrak{p}} = \mathbf{a} + \mathbf{b}i \in \mathbb{Z}[i]$ such $\mathfrak{p} = (\alpha_{\mathfrak{p}})$ and $\alpha_{\mathfrak{p}} \equiv \left(\frac{n}{p}\right)$ mod 2 + 2*i*.

• When $p \equiv 3 \mod 4$,

$$(1 - T)(1 - \rho T)Z(E_n/\mathbb{F}_{\rho}; T) = 1 + \rho T^2$$

- Weil. Jacobi Sums as "Grossencharaktere". (also called Hecke character : an idèle class character)
- $L(E_n, s)$.

$$L(E_n,s) = \frac{1}{4} \sum_{a+bi \in \mathbb{Z}[i]} \frac{\psi_n(a+bi)}{(a^2+b^2)^s},$$

where

$$\psi_n(x) = x\psi'_n(x), \quad \psi_n(x) = \begin{cases} \psi'_1(x)\left(\frac{n}{x\cdot\overline{x}}\right), & x \text{ is coprime to } 2n, \\ 0, & \text{otherwise,} \end{cases}$$

where $\psi'_1(x)$ is a multiplicative character of order 4 on $(\mathbb{Z}[i]/(2+2i))^{\times}$ such that $\psi'_1(x)x \equiv 1 \mod 2+2i$.

Remark. For a CM elliptic curve *E* defined over \mathbb{Q} , there exists an imaginary CM field *K* and a Hecke character ψ of *K* such that $L(\psi, s)$ is the Hasse-Weil *L*-function of *E*. That is,

$$L(\psi, \mathbf{s}) = L(\mathbf{E}, \mathbf{s}).$$

Functional Equation of $L(E_n, s)$. The *L*-function $L(E_n, s)$, Re(s) > 3/2, can be extended analytically to an entire fuction on the whole complex *s*-plane. Define

$$\Lambda(\boldsymbol{s}) := \left(\frac{\sqrt{N}}{2\pi}\right)^{\boldsymbol{s}} \Gamma(\boldsymbol{s}) L(\boldsymbol{E}_n, \boldsymbol{s}), \quad \boldsymbol{N} = \begin{cases} 32n^2, & n \text{ odd}, \\ 16n^2, & n \text{ even}, \end{cases}$$

where $\Gamma(\cdot)$ is the Gamma function. Then $\Lambda(s)$ satisfies the functional equation

$$\Lambda(s) = egin{cases} \Lambda(2-s), & n \equiv 1, 2, 3 \mod 8, \ -\Lambda(2-s), & n \equiv 5, 6, 7 \mod 8. \end{cases}$$

Weak BSD Conjecture

• Weak Birch and Swinnerton-Dyer Conjecture.

$$\operatorname{ord}_{s=1}L(E, s) = \operatorname{rank}(E(\mathbb{Q})).$$

L(E, 1) = 0 if and only if *E* has infinitely many rational points.

- Coates-Wiles. Let *E* be an elliptic curve defined over ℚ with *CM*. If rank(*E*(ℚ)) > 0, then *L*(*E*, 1) = 0.
- Proposition II.6.12. In case $n \equiv 5, 6, \text{ or } 7 \mod 8$, if the weak BSD conjecture holds for E_n , then *n* is a congruent number.
- Gross-Zagier. For $n \equiv 5, 6, \text{ or } 7 \mod 8$, the elliptic curve E_n has non-zero rank if $\operatorname{ord}_{s=1} L(E_n, s) = 1$.

 $L(E_n, 1) = ?$ for $n \equiv 1, 2, \text{ or } 3 \mod 8$.