The Hasse-Weil L-Function of an Elliptic Curve

The Congruence Zeta-Function (Local Zeta Function)

Set $q=p^{k}$, for some prime p. The notation \mathbb{F}_{q} stands for the finite field with q elements.
Definition. Let C be a projective plane curve defined over \mathbb{F}_{q}. The zeta function of C over \mathbb{F}_{q} is given by the formal power series

$$
Z\left(C / \mathbb{F}_{q} ; T\right):=\exp \left(\sum_{r=1}^{\infty}\left(\# C\left(\mathbb{F}_{q^{r}}\right)\right) \frac{T^{r}}{r}\right)
$$

where

$$
\exp (u)=\sum_{k=0}^{\infty} \frac{u^{k}}{k!}
$$

The Congruence Zeta-Function (Local Zeta Function)

Proposition. Let E be an elliptic curve defined over \mathbb{F}_{q}. There is an integer a_{E} such that

$$
Z\left(E / \mathbb{F}_{q} ; T\right)=\frac{1-a_{E} T+q T^{2}}{(1-T)(1-q T)}=\frac{(1-\alpha T)(1-\beta T)}{(1-T)(1-q T)}
$$

and the roots have the property $|\alpha|=|\beta|=\sqrt{q}$. Furthermore

$$
Z\left(E / \mathbb{F}_{q} ; T\right)=Z\left(E / \mathbb{F}_{q} ; 1 /(q T)\right) .
$$

Hasse-Weil L-Fucntions

Let E be an elliptic curve defined over \mathbb{Q}. We make substitution $T=p^{-s}$ in $Z\left(E / \mathbb{F}_{p} ; T\right)$, and define Hasse-Weil L-series $L(E, s)$ by

$$
L(E, s)=\frac{\zeta(s) \zeta(s-1)}{\Pi_{p} Z\left(E / \mathbb{F}_{p} ; p^{-s}\right)},
$$

where $\zeta(s)$ is the Riemann zeta function defined by

$$
\zeta(s)=\sum_{n \in \mathbb{N}} \frac{1}{n^{s}}, \text { for } \operatorname{Re}(s)>1
$$

and we can express $\zeta(s)$ as $\zeta(s)=\prod_{\text {primesp }} \frac{1}{1-p^{-s}}$. Thus, we have

$$
L(E, s)=* \prod_{p: g o o d} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}
$$

Reduction

Let E be an elliptic curve defined over \mathbb{Q} given by a Weierstrass equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

The reduction of E modulo p, denoted \widetilde{E}, is the curve over \mathbb{F}_{p} defined by the equation

$$
\widetilde{E}: y^{2}+\widetilde{a_{1}} x y+\widetilde{a_{3}} y=x^{3}+\widetilde{a_{2}} x^{2}+\widetilde{a_{4}} x+\widetilde{a_{6}}
$$

where \widetilde{a}_{i} denotes reduction modulo p. (The curve \widetilde{E} may be singular).

Definition.We say that
(1) E has good (stable) reduction if \widetilde{E} is non-singular.
(2) E has multiplicative (semi-stable) reduction if \widetilde{E} admits a double point with two distinct tangents. (E has a node.) And the reduction is called split if the tangent directions are defined over \mathbb{F}_{p}, otherwise it is non-split.
(3) E has additive (unstable) reduction if \widetilde{E} admits a double point with only one tangent. (E has a cusp.)
In cases (2) and (3), E is naturally said to have bad reduction.

L-Fucntions

For each prime p, if E has good reduction at p, let

$$
a_{p}:=p+1-\# \tilde{E}\left(\mathbb{F}_{p}\right) .
$$

The local factor of the L-series of E at p is

$$
L_{p}(T)=1-a_{p} T+p T^{2} .
$$

We extend the definition of $L_{p}(T)$ to the case that E has bad reduction by setting
$L_{p}(T)= \begin{cases}1-T, & \text { if } E \text { has split multiplicicative reduction at } p, \\ 1+T, & \text { if } E \text { has non-split multiplicicative reduction at } p, \\ 1, & \text { if } E \text { has additive reduction at } p .\end{cases}$
Definition. We define the L-function of the elliptic curve by

$$
L(E / \mathbb{Q}, s)=\prod_{p} L_{p}\left(p^{-s}\right)^{-1} .
$$

Conductor of E / \mathbb{Q}

Let E be an elliptic curve defined over \mathbb{Q}. For each prime p, we define

$$
f_{p}(E / \mathbb{Q})= \begin{cases}0, & \text { if } E \text { has good reduction at } p, \\ 1, & \text { if } E \text { has multiplicicative reduction at } p, \\ 2+\delta_{p}, & \text { if } E \text { has additive reduction at } p,\end{cases}
$$

where $\delta_{p}=0$ if $p \nmid 6$. The invariant δ_{p} may be computed using Ogg's formula in "Elliptic curves and wild ramification".
The conductor of E is defined to be

$$
N_{E}:=\prod_{p} p^{t_{p}}
$$

Remark. The minimal discriminant is a measure of the bad reduction of E. Another such measure is the conductor of E / \mathbb{Q}.

As an application of Modularity Theorem...
Functional Equation of $L(E, s)$. Let E be an elliptic curve defined over \mathbb{Q} with conductor N_{E}. The L-function $L(E, s)$ can be extended analytically to an entire fuction on the whole complex s-plane. Define

$$
\Lambda(s):=\left(\frac{\sqrt{N_{E}}}{2 \pi}\right)^{s} \Gamma(s) L(E, s)
$$

where $\Gamma(\cdot)$ is the Gamma function. Then $\Lambda(s)$ satisfies the functional equation

$$
\Lambda(s)= \pm \Lambda(2-s)
$$

Goal: Zeta-Function of E_{n}

Let E_{n} be the elliptic curve $E_{n}: y^{2}=x^{3}-n^{2} x$.
Theorem. Let p be a prime with $p \nmid 2 n$. Then

$$
Z\left(E_{n} / \mathbb{F}_{p} ; T\right)=\frac{1-a_{E} T+p T^{2}}{(1-T)(1-p T)}=\frac{(1-\alpha T)(1-\bar{\alpha} T)}{(1-T)(1-p T)}
$$

where

$$
\alpha=\left\{\begin{array}{lll}
i \sqrt{p}, & \text { if } p \equiv 3 & \bmod 4 \\
a+b i, & \text { if } p \equiv 1 \bmod 4
\end{array}\right.
$$

where $a, b \in \mathbb{Z}, a^{2}+b^{2}=p$ and $a+b i \equiv\left(\frac{n}{p}\right) \bmod 2+2 i$

Counting Points

- Let χ be a group homomorphism from \mathbb{F}_{q}^{\times}to \mathbb{C}^{\times}. Usually, we say χ is a multiplicative characters on \mathbb{F}_{q}^{\times}.
- Let $\widehat{\mathbb{F}_{q}^{\times}}$denote the group of multiplicative characters on \mathbb{F}_{q}^{\times}.
- Extend $\chi \in \widehat{\mathbb{F}_{q}^{\times}}$to \mathbb{F}_{q} by setting $\chi(0)=0$.
- Denote $\bar{\chi}$ the complex conjugation of $\chi, \bar{\chi}=\chi^{-1}$.

Lemma. If $a \in \mathbb{F}_{q}^{\times}$and $m \mid(q-1)$, then

$$
\#\left\{y \in \mathbb{F}_{q}: y^{m}=a\right\}=\sum_{\chi^{m}=1} \chi(a)
$$

where the sum runs over all characters $\chi \in \widehat{\mathbb{F}_{q}^{\times}}$whose order divides n.

Proposition. For any prime power $q=p^{r}$ with $p \nmid 2 n$, we have
$\# E_{n}\left(\mathbb{F}_{q}\right)= \begin{cases}1+q, & \text { if } q \equiv 3 \bmod 4 \\ 1+q+\chi_{2}(n)\left(J\left(\chi_{2}, \chi_{4}\right)+J\left(\chi_{2}, \overline{\chi_{4}}\right)\right), & \text { if } q \equiv 1 \bmod 4\end{cases}$
where χ_{2} is the quadratic character, χ_{4} is a character of exact order 4 of \mathbb{F}_{q}^{\times}, and

$$
J(A, B):=\sum_{x \in \mathbb{F}_{q}} A(x) B(1-x)
$$

is the Jacobi sum of the characters A and B.

Remarks.

- The curves $E_{n}: y^{2}=x^{3}-n^{2} x$ and $C: y^{2}=x^{4}+n^{2} / 4$ are \mathbb{Q}-isomorphic (as hyperelliptic curves).
- For a non-singular curve C of the form $x^{n}-y^{m}=d$, we have

$$
\# C\left(\mathbb{F}_{q}\right) \quad "=" \quad 1+q+\sum_{i, j} J\left(\chi_{m}^{i}, \chi_{n}^{j}\right),
$$

if $n \mid q-1$ and $m \mid q-1$, where χ_{k} is a character of exact order k of \mathbb{F}_{q}^{\times}.

Rationality of $Z\left(E_{n}\right)$ - ideas

- For a given character $A \in \widehat{\mathbb{F}_{q}^{\times}}$, the Gauss sum of A is defined to be

$$
g(A):=\sum_{x \in \mathbb{F}_{q}^{\times}} A(x) \zeta_{p}^{\mathrm{T}_{\mathbb{F}_{p}}^{\mathbb{F} q}(x)}
$$

We have the following realtion between Gauss sums and Jacobi sums:

$$
J(A, B)=\frac{g(A) g(B)}{g(A B)} \quad \text { if } A \neq \bar{B}
$$

- Hasse-Davenport Relation. Let \mathbb{F} be a finite field and \mathbb{F}_{s} an extension field over \mathbb{F} of degree s. If $\chi \neq \varepsilon \in \widehat{\mathbb{F}^{\times}}$and $\chi_{s}=\chi \circ N_{\mathbb{F}_{s} / \mathbb{F}}$ a character of \mathbb{F}_{s}. Then

$$
(-g(\chi))^{s}=-g\left(\chi_{s}\right)
$$

Rationality of $Z\left(E_{n}\right)$ - ideas

- When $p \equiv 1 \bmod 4$, let χ_{2} be the quadratic character and χ_{4} a character of order 4 of \mathbb{F}_{p}^{\times}. Denote $\alpha=-\chi_{2}(n) J\left(\chi_{2}, \chi_{4}\right)$. Then

$$
\# E_{n}\left(\mathbb{F}_{p^{r}}\right)=1+p^{r}-\alpha^{r}-\bar{\alpha}^{r}
$$

- When $p \equiv 3 \bmod 4$, let χ_{2} be the quadratic character and χ_{4} a character of order 4 of $\mathbb{F}_{p^{2}}^{\times}$. Denote $\alpha=-J\left(\chi_{2}, \chi_{4}\right)=-p$. Then, for $r \geq 1$,

$$
\begin{gathered}
\# E_{n}\left(\mathbb{F}_{p^{2 s+1}}\right)=1+p^{2 r-1} \\
\# E_{n}\left(\mathbb{F}_{p^{2 r}}\right)=1+p^{2 r}-\alpha^{r}-\bar{\alpha}^{r}
\end{gathered}
$$

$$
-\ln (1-x)=\sum_{n \geq 1} \frac{x^{n}}{n}
$$

Reformulate Zeta-Function of E_{n}

Let E_{n} be the elliptic curve $E_{n}: y^{2}=x^{3}-n^{2} x$.

- When $p \equiv 1 \bmod 4$,

$$
(1-T)(1-p T) Z\left(E_{n} / \mathbb{F}_{p} ; T\right)=\prod_{(\mathfrak{p}) \mid p}\left(1-\alpha_{\mathfrak{p}} T\right)
$$

where $\alpha_{\mathfrak{p}}=\boldsymbol{a}+\boldsymbol{b i} \in \mathbb{Z}[i]$ such $\mathfrak{p}=\left(\alpha_{\mathfrak{p}}\right)$ and $\alpha_{\mathfrak{p}} \equiv\left(\frac{n}{p}\right)$ $\bmod 2+2 i$.

- When $p \equiv 3 \bmod 4$,

$$
(1-T)(1-p T) Z\left(E_{n} / \mathbb{F}_{p} ; T\right)=1+p T^{2}
$$

- Weil. Jacobi Sums as "Grossencharaktere". (also called Hecke character : an idèle class character)
- $L\left(E_{n}, s\right)$.

$$
L\left(E_{n}, s\right)=\frac{1}{4} \sum_{a+b i \in \mathbb{Z}[]} \frac{\psi_{n}(a+b i)}{\left(a^{2}+b^{2}\right)^{s}},
$$

where

$$
\psi_{n}(x)=x \psi_{n}^{\prime}(x), \quad \psi_{n}(x)= \begin{cases}\psi_{1}^{\prime}(x)\left(\frac{n}{x \cdot \bar{x}}\right), & x \text { is coprime to } 2 n, \\ 0, & \text { otherwise },\end{cases}
$$

where $\psi_{1}^{\prime}(x)$ is a multiplicative character of order 4 on $(\mathbb{Z}[i] /(2+2 i))^{\times}$such that $\psi_{1}^{\prime}(x) x \equiv 1 \bmod 2+2 i$.
Remark. For a CM elliptic curve E defined over \mathbb{Q}, there exists an imaginary CM field K and a Hecke character ψ of K such that $L(\psi, s)$ is the Hasse-Weil L-function of E. That is,

$$
L(\psi, s)=L(E, s)
$$

Functional Equation of $L\left(E_{n}, s\right)$. The L-function $L\left(E_{n}, s\right)$, $\operatorname{Re}(s)>3 / 2$, can be extended analytically to an entire fuction on the whole complex s-plane. Define

$$
\Lambda(s):=\left(\frac{\sqrt{N}}{2 \pi}\right)^{s} \Gamma(s) L\left(E_{n}, s\right), \quad N= \begin{cases}32 n^{2}, & n \text { odd } \\ 16 n^{2}, & n \text { even }\end{cases}
$$

where $\Gamma(\cdot)$ is the Gamma function. Then $\Lambda(s)$ satisfies the functional equation

$$
\Lambda(s)= \begin{cases}\Lambda(2-s), & n \equiv 1,2,3 \quad \bmod 8 \\ -\Lambda(2-s), & n \equiv 5,6,7 \\ \bmod 8\end{cases}
$$

Weak BSD Conjecture

- Weak Birch and Swinnerton-Dyer Conjecture.

$$
\operatorname{ord}_{s=1} L(E, s)=\operatorname{rank}(E(\mathbb{Q})) .
$$

$L(E, 1)=0$ if and only if E has infinitely many rational points.

- Coates-Wiles. Let E be an elliptic curve defined over \mathbb{Q} with $C M$. If $\operatorname{rank}(E(\mathbb{Q}))>0$, then $L(E, 1)=0$.
- Proposition II.6.12. In case $n \equiv 5,6$, or $7 \bmod 8$, if the weak BSD conjecture holds for E_{n}, then n is a congruent number.
- Gross-Zagier. For $n \equiv 5,6$, or $7 \bmod 8$, the elliptic curve E_{n} has non-zero rank if $\operatorname{ord}_{s=1} L\left(E_{n}, s\right)=1$.

$$
L\left(E_{n}, 1\right)=? \text { for } n \equiv 1,2 \text {, or } 3 \bmod 8 .
$$

