Modular Curves as Riemann Surfaces

[Koblitz]: III.1 - Part 2

Goal.

- The quotient space X₀(1) := PSL₂(ℤ)\ℍ* is a compact Riemann surface.
- The genus of $X_0(1)$ is 0.
- The field of meromorphic functions on $X_0(1)$ is $\mathbb{C}(j)$, where *j* is the elliptic *j*-invariant. (Will see in Proposition III.2.12.)

Recall. A second-countable Hausdorff topological space together with a complex structure is a Riemann surface.

Recall. every compact Riemann surface *X* can be decomposed into triangles such that two triangles either do not intersect or share a common vertex or a common edge. Denote *V* the number of vertices, *E* the number of edges, and *F* the number of faces. The genus of *X*, g(X), is the number *g* satisfying

V-E+F=2-2g.

Fundamental system of neighborhoods in Ⅲ. (pictures from Cohen-Strömberg's book "Modular Forms")

Neighborhood around the elliptic point ρ (order-3) and its local parameter. (picture from Diamond-Shurman's book "A First Course in Modular Forms")

The Complex Structure of $X_0(1)$

The following maps give to $PSL_2(\mathbb{Z}) \backslash \mathbb{H}^*$ the structure of a Riemann Surface.

point τ_0	local parameter
$ au_0 \neq i, \rho, \infty$	$\tau \mapsto \frac{\tau - \tau_0}{\tau - \overline{\tau_0}}$
i	$\tau \mapsto \left(\frac{\tau - i}{\tau - \overline{i}}\right)^2$
ρ	$ au \mapsto \left(rac{ au - ho}{ au - \overline{ ho}} ight)^3$
∞	$ au\mapsto oldsymbol{q}=oldsymbol{e}^{2\pi i au}$