
Modular Forms – Part 1

[Koblitz]: III.2



Slash Operator

Let γ =

(
a b
c d

)
∈ GL+

2 (R). For an integer k and a

meromorphic function f : H 7→ C we let the notation f
∣∣ [γ]k

denote the slash operator

f
∣∣ [γ]k = (det γ)k/2(cτ + d)−k f

(
aτ + b
cτ + d

)
.

The factor cτ + d is called the automorphy factor.
(If the weight k is clear from the context, we often write simply
f
∣∣ γ.)

Lemma. For γ1, γ2 ∈ GL+
2 (R) and a meromorphic function

f : H 7→ C, we have

f
∣∣ [γ1γ2]k =

(
f
∣∣ [γ1]k

) ∣∣ [γ2]k .



Modular Forms

Definition. Let G be a subgroup of SL2(Z) of a finite index, and
k be any integer. A holomorphic function f : H 7→ C is a
modular form of weight k with respect to G if
(1) f (τ)

∣∣ [γ] = f (τ) for all τ ∈ H and γ ∈ G,
(2) f (τ) is holomorphic at every cusp.

The set of all modular forms of weight k with respect to G is
denoted by Mk (G). If, in addition to (1) and (2), the function
also satisfies
(3) f vanishes at every cusp,

then the function f is a cusp form of weight k with respect to G.
The set of all cusp forms of weight k on G is denoted by Sk (G).

Proposition. The sets Mk (Γ) and Sk (Γ) are vector spaces over
C.



Examples

For even integers k ≥ 4, the Eisenstein series

Gk (τ) :=
∑

m,n∈Z,
(m,n) 6=(0,0)

1
(mτ + n)k

satisfy

Gk

(
aτ + b
cτ + d

)
= (cτ + d)kGk (τ)

for all a,b, c,d ∈ Z with ad − bc = 1, and therefore are modular
forms of weight k with respect to PSL2(Z).
Write g2 = 60G4 and g3 = 140G6. Then
• g3

2 and g2
3 are both modular forms of weight 12;

• ∆ = g3
2 − 27g2

3 is a non-zero modular form that vanishes at
the unique inequivalent cusp∞ for PSL2(Z) and thus ∆ is
a cusp form of weight 12.



Remark (Take G that contains ±I for example)

Let a/c ∈ P1(Q) be a cusp and choose σ =

(
a b
c d

)
∈ PSL2(Z).

Then a function f satisfies condition (1) if and only if the function
g(τ) = f

∣∣
k [σ] is invariant under the action of σ−1Γσ since(

f
∣∣ [σ]

) ∣∣ [σ−1γσ] =
(
f
∣∣ [γ]

) ∣∣ [σ] = f
∣∣ [σ]

for all γ ∈ G. In particular, g(τ) is invariant under the
substitution τ 7→ τ + h, where h is the smallest positive integer
such that σT hσ−1 ∈ G (called width or ramification index of the
cusp a/c). Let ∑

n∈Z
anqn

h , qh = e2πiτ/h

be the Fourier expansion of g(τ). Then we say f is
holomorphic at a/c provided that an = 0 for all n < 0.
Moreover, with this setting, condition (3) means that an = 0 for
all n ≤ 0 for each cusp a/c.



Modular Functions

Definition. Let G be a subgroup of SL2(Z) of a finite index. A
meromorphic function f : H∗ 7→ C is a modular function if

f (γτ) = f (τ), for all τ ∈ H, γ ∈ G.

Example. The j-invariant j := 1728g3
2/∆ is a modular function

on PSL2(Z).



Modular Forms on PSL2(Z)

Goal. Denote Γ the group PSL2(Z)}. In the following, we will
see and/or show

1. Fourier expansions of Eisenstein series;
2. Mk (Γ) = Sk (Γ)⊕ CGk and dimensions of Mk (Γ) ;
3. Proposition III.2.10: Modualr forms on Γ can be expressed

in terms of Eisenstein series G4 and G6.
4. Proposition III.2.11: The elliptic j-funEisenstein seriesction

gives a bijection from X0(1) to P1(C).
5. Proposition III.2.12: The field of meromorphic functions on

X0(1) is C(j).



Normalized Eisenstein series

We define the (normalized) Eisenstein series of weight k by
Ek (τ) := Gk (τ)/2ζ(k).

Gk (τ) :=
∑

c,d∈Z,
(c,d) 6=(0,0)

1
(cτ + d)k =

∑
n>0

∑
gcd(c,d)=n

1
(cτ + d)k

=
∑
n∈N

1
nk

∑
c,d∈Z

gcd(c,d)=1

1
(cτ + d)k = ζ(k)

∑
c,d∈Z

gcd(c,d)=1

1
(cτ + d)k

= 2ζ(k)

1 +
∑

gcd(c,d)=1
c>0

1
(cτ + d)k

 ,

where ζ(s) =
∑
n∈N

1
ns is the Riemann zeta function.



Thus,

Ek (τ) :=
Gk (τ)

2ζ(k)
=

1
2

∑
gcd(c,d)=1

c,d∈Z

1
(cτ + d)k

Remark: E2. We can define Eisenstein sereis G2 and E2 in a
similar way, but they are not modular forms:

E2(γτ) = (cτ+d)2E2(τ)−6i
π
·c(cτ+d), γ =

(
a b
c d

)
∈ PSL2(Z).

To obtain the Fourier expansions of Eisenstein series, we will
use the Lipschitz summation formula, which can be derived
from Poisson summation formula.



Theorem
Let k ≥ 2 be an even integer. Let Ek (τ) be the normalized
Eisenstein series of weight k. Then we have

Ek (τ) = 1 +
(2πi)k

Γ(k)ζ(k)

∞∑
r=1

r k−1qr

1− qr = 1− 2k
Bk

∞∑
n=1

σk−1(n)qn,

where q = e2πiτ and Bk are the Bernoulli numbers.

Corollary. For positive integers n,

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n −m)

and

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040
n−1∑
m=1

σ3(m)σ5(n −m).



Poisson Summation Formula. Suppose that f (t) is
continuous and of bounded variation such that∫

R
|f (t)|dt <∞.

Then one has ∑
n∈Z

f (t + n) = lim
N→∞

∑
|n|≤N

f̂ (n)e2πint

for all t ∈ [0,1), where

f̂ (n) =

∫
R

f (t)e−2πint dt .



Lipschitz summation formula. Let k ∈ Z>1. For τ ∈ H, we
have ∑

n∈Z

1
(τ + n)k =

(−2πi)k

Γ(k)

∞∑
r=1

r k−1e2πirτ .

Sketch of Proof. By the Poisson summation formula we have∑
n∈Z

1
(τ + n)k =

∑
r∈Z

∫ ∞
−∞

e−2πirx

(x + τ)k dx .

• When r = 0, the integral is 0.
• When r < 0, we move the line of integration to the

horizontal line Im x = T and let T tend to infinity. The
integral is 0.
• When r > 0, we move the line of integration to the line

Im x = −T and let T →∞. By doing so, we cross the pole
of the integrand at x = −τ . Thus, the integral is

−2πi · Resx=−τ

(
e−2πirx

(x + τ)k

)
=

(−2πi)k

(k − 1)!
r k−1e2πirτ .



Proof of Theorem (use Gk ).

Gk (τ) :=
∑

c,d∈Z,
(c,d) 6=(0,0)

1
(cτ + d)k =

∑
d 6=0

1
dk +

∑
c 6=0
d∈Z

1
(cτ + d)k

= 2ζ(k) + 2
∑
c>0
d∈Z

1
(cτ + d)k

= 2ζ(k) + 2
(2πi)k

Γ(k)

∑
r>0

r k−1
∑
c>0

qrc

= 2ζ(k) + 2
(2πi)k

Γ(k)

∞∑
r=1

r k−1qr

1− qr .

Thus,

Ek (τ) = 1 +
(2πi)k

Γ(k)ζ(k)

∞∑
r=1

r k−1qr

1− qr .



Proof of Theorem.
Due to the exclusion-inclusion principle, we can rewrite Ek (τ)
as

Ek (τ) = 1 +
∑
c>0

∑
d∈Z

gcd(c,d)=1

1
(cτ + d)k

= 1 +
∑
c>0

∑
m|c

µ(m)
∑

d∈Z,m|d

1
(cτ + d)k

= 1 +
∑
c>0

∑
m|c

µ(m)

mk

∑
d∈Z

1
(cτ/m + d)k ,

where µ(m) is the Möbius function.
Applying Lipschitz summation formula, we obtain

Ek (τ) = 1 +
(−2πi)k

(k − 1)!

∑
c>0

∑
m|c

µ(m)

mk

∑
r∈N

r k−1e2πircτ/m



Thus

Ek (τ) = 1 +
(−2πi)k

(k − 1)!

∑
c∈N

∑
m|c

µ(m)

mk

∑
r∈N

r k−1e2πircτ/m

= 1 +
(2πi)k

(k − 1)!

∞∑
m=1

µ(m)

mk

∞∑
r=1

∞∑
c=1

r k−1e2πircτ .

Noticing
∞∑

m=1

µ(m)

mk =
∏

p prime

(
1− 1

pk

)
=

1
ζ(k)

,

we see that

Ek (τ) = 1 +
(2πi)k

Γ(k)ζ(k)

∞∑
r=1

r k−1qr

1− qr ,

where we set q = e2πiτ .



The series can also be written as

Ek (τ) = 1 +
(2πi)k

Γ(k)ζ(k)

∞∑
n=1

σk−1(n)qn,

where σk−1(n) is the sum of divisors function defined by

σk−1(n) =
∑

d |n,d>0

dk−1.

For n = 2m ∈ 2Z+, the zeta values are given by

ζ(2m) =
(−1)m−1

(2m)!
22m−1π2mB2m,

where Bn is the Bernoulli number and can be determined by the
Tayler expansion

y
ey − 1

=
∞∑

n=0

Bn

n!
xn.



Proposition III.2.8. Let f (z) be a meromorphic modular form
of weight k for PSL2(Z). Then

v∞(f ) +
∑
P∈H

1
eP

vP(f ) =
k
12
,

where

vP(f ) = ordp(f ) :=


m, if f has a zero of order m at P,
−m, if f has a pole of order m at P,
0, otherwise,

and eP is the order of the isotropy group of P.



Proposition III.2.9-10.
1. M0(PSL2(Z)) = C
2. Mk (PSL2(Z)) = {0} if k = 2 or k < 0.

Corollary (Dimension Formulas)
For positive even integers k We have

dim Mk (PSL2(Z)) =

{
bk/12c, if k ≡ 2 mod 12,
bk/12c+ 1, if k 6≡ 2 mod 12.

and

dim Sk (PSL2(Z)) =


0, if k = 2,
bk/12c − 1, if k ≡ 2 mod 12, k ≥ 14,
bk/12c, if k 6≡ 2 mod 12.



Proposition III.2.9-12.
1. Sk (PSL2(Z) = C∆

2. Mk (PSL2(Z)) = Sk (PSL2(Z))⊕ CGk , for k ≥ 4.
3. For any f ∈ Mk (PSL2(Z)),

f =
∑

4i+6j=k

ci,jE i
4E j

6, for some ci,j ∈ C.

4. The elliptic j-funEisenstein seriesction gives a bijection
from X0(1) to P1(C).

5. The field of meromorphic functions on X0(1) is C(j).
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