Modular Forms - Part 1

[Koblitz]: III. 2

Slash Operator

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$. For an integer k and a
meromorphic function $f: \mathbb{H} \mapsto \mathbb{C}$ we let the notation $f \mid[\gamma]_{k}$ denote the slash operator

$$
f \left\lvert\,[\gamma]_{k}=(\operatorname{det} \gamma)^{k / 2}(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)\right.
$$

The factor $c \tau+d$ is called the automorphy factor. (If the weight k is clear from the context, we often write simply $f \mid \gamma$.)
Lemma. For $\gamma_{1}, \gamma_{2} \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ and a meromorphic function $f: \mathbb{H} \mapsto \mathbb{C}$, we have

$$
f\left|\left[\gamma_{1} \gamma_{2}\right]_{k}=\left(f \mid\left[\gamma_{1}\right]_{k}\right)\right|\left[\gamma_{2}\right]_{k}
$$

Modular Forms

Definition. Let G be a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ of a finite index, and k be any integer. A holomorphic function $f: \mathbb{H} \mapsto \mathbb{C}$ is a modular form of weight k with respect to G if
(1) $f(\tau) \mid[\gamma]=f(\tau)$ for all $\tau \in \mathbb{H}$ and $\gamma \in G$,
(2) $f(\tau)$ is holomorphic at every cusp.

The set of all modular forms of weight k with respect to G is denoted by $M_{k}(G)$. If, in addition to (1) and (2), the function also satisfies
(3) f vanishes at every cusp,
then the function f is a cusp form of weight k with respect to G.
The set of all cusp forms of weight k on G is denoted by $S_{k}(G)$.
Proposition. The sets $M_{k}(\Gamma)$ and $S_{k}(\Gamma)$ are vector spaces over \mathbb{C}.

Examples

For even integers $k \geq 4$, the Eisenstein series

$$
G_{k}(\tau):=\sum_{\substack{m, n \in \mathbb{Z}, 0 \\(m, n) \neq(0,0)}} \frac{1}{(m \tau+n)^{k}}
$$

satisfy

$$
G_{k}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} G_{k}(\tau)
$$

for all $a, b, c, d \in \mathbb{Z}$ with $a d-b c=1$, and therefore are modular forms of weight k with respect to $\operatorname{PSL}_{2}(\mathbb{Z})$.
Write $g_{2}=60 G_{4}$ and $g_{3}=140 G_{6}$. Then

- g_{2}^{3} and g_{3}^{2} are both modular forms of weight 12 ;
- $\Delta=g_{2}^{3}-27 g_{3}^{2}$ is a non-zero modular form that vanishes at the unique inequivalent cusp ∞ for $P S L_{2}(\mathbb{Z})$ and thus Δ is a cusp form of weight 12.

Remark (Take G that contains $\pm /$ for example)

Let $a / c \in \mathbb{P}^{1}(\mathbb{Q})$ be a cusp and choose $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}_{2}(\mathbb{Z})$. Then a function f satisfies condition (1) if and only if the function $g(\tau)=\left.f\right|_{k}[\sigma]$ is invariant under the action of $\sigma^{-1} \Gamma \sigma$ since

$$
(f \mid[\sigma])\left|\left[\sigma^{-1} \gamma \sigma\right]=(f \mid[\gamma])\right|[\sigma]=f \mid[\sigma]
$$

for all $\gamma \in G$. In particular, $g(\tau)$ is invariant under the substitution $\tau \mapsto \tau+h$, where h is the smallest positive integer such that $\sigma T^{h} \sigma^{-1} \in \bar{G}$ (called width or ramification index of the cusp a / c). Let

$$
\sum_{n \in \mathbb{Z}} a_{n} q_{h}^{n}, \quad q_{h}=e^{2 \pi i \tau / h}
$$

be the Fourier expansion of $g(\tau)$. Then we say f is holomorphic at a / c provided that $a_{n}=0$ for all $n<0$. Moreover, with this setting, condition (3) means that $a_{n}=0$ for all $n \leq 0$ for each cusp a/c.

Modular Functions

Definition. Let G be a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ of a finite index. A meromorphic function $f: \mathbb{H}^{*} \mapsto \mathbb{C}$ is a modular function if

$$
f(\gamma \tau)=f(\tau), \quad \text { for all } \tau \in \mathbb{H}, \gamma \in G
$$

Example. The j-invariant $j:=1728 g_{2}^{3} / \Delta$ is a modular function on $\operatorname{PSL}_{2}(\mathbb{Z})$.

Modular Forms on $\operatorname{PSL}_{2}(\mathbb{Z})$

Goal. Denote $\bar{\Gamma}$ the group $\left.\operatorname{PSL}_{2}(\mathbb{Z})\right\}$. In the following, we will see and/or show

1. Fourier expansions of Eisenstein series;
2. $M_{k}(\bar{\Gamma})=S_{k}(\bar{\Gamma}) \oplus \mathbb{C} G_{k}$ and dimensions of $M_{k}(\bar{\Gamma})$;
3. Proposition III.2.10: Modualr forms on $\bar{\Gamma}$ can be expressed in terms of Eisenstein series G_{4} and G_{6}.
4. Proposition III.2.11: The elliptic j-funEisenstein seriesction gives a bijection from $X_{0}(1)$ to $\mathbb{P}^{1}(\mathbb{C})$.
5. Proposition III.2.12: The field of meromorphic functions on $X_{0}(1)$ is $\mathbb{C}(j)$.

Normalized Eisenstein series

We define the (normalized) Eisenstein series of weight k by $E_{k}(\tau):=G_{k}(\tau) / 2 \zeta(k)$.

$$
\begin{aligned}
G_{k}(\tau) & :=\sum_{\substack{c, d \in \mathbb{Z},(c, d) \neq(0,0)}} \frac{1}{(c \tau+d)^{k}}=\sum_{n>0} \sum_{\operatorname{gcd}(c, d)=n} \frac{1}{(c \tau+d)^{k}} \\
& =\sum_{n \in \mathbb{N}} \frac{1}{n^{k}} \sum_{\substack{c, d \in \mathbb{Z} \\
\operatorname{gcc}(c, d)=1}} \frac{1}{(c \tau+d)^{k}}=\zeta(k) \sum_{\substack{c, d \in \mathbb{Z} \\
\operatorname{gcd}(c, d)=1}} \frac{1}{(c \tau+d)^{k}} \\
& =2 \zeta(k)\left(1+\sum_{\substack{\operatorname{gcd}(c, d)=1 \\
c>0}} \frac{1}{(c \tau+d)^{k}}\right)
\end{aligned}
$$

where $\zeta(s)=\sum_{n \in \mathbb{N}} \frac{1}{n^{s}}$ is the Riemann zeta function.

Thus,

$$
E_{k}(\tau):=\frac{G_{k}(\tau)}{2 \zeta(k)}=\frac{1}{2} \sum_{\substack{\operatorname{gcd}(c, d)=1 \\ c, d \in \mathbb{Z}}} \frac{1}{(c \tau+d)^{k}}
$$

Remark: E_{2}. We can define Eisenstein sereis G_{2} and E_{2} in a similar way, but they are not modular forms:
$E_{2}(\gamma \tau)=(c \tau+d)^{2} E_{2}(\tau)-\frac{6 i}{\pi} \cdot c(c \tau+d), \quad \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}_{2}(\mathbb{Z})$.

To obtain the Fourier expansions of Eisenstein series, we will use the Lipschitz summation formula, which can be derived from Poisson summation formula.

Theorem

Let $k \geq 2$ be an even integer. Let $E_{k}(\tau)$ be the normalized Eisenstein series of weight k. Then we have

$$
E_{k}(\tau)=1+\frac{(2 \pi i)^{k}}{\Gamma(k) \zeta(k)} \sum_{r=1}^{\infty} \frac{r^{k-1} q^{r}}{1-q^{r}}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n},
$$

where $q=e^{2 \pi i \tau}$ and B_{k} are the Bernoulli numbers.
Corollary. For positive integers n,

$$
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{3}(n-m)
$$

and

$$
11 \sigma_{9}(n)=21 \sigma_{5}(n)-10 \sigma_{3}(n)+5040 \sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{5}(n-m)
$$

Poisson Summation Formula. Suppose that $f(t)$ is continuous and of bounded variation such that

$$
\int_{\mathbb{R}}|f(t)| d t<\infty .
$$

Then one has

$$
\sum_{n \in \mathbb{Z}} f(t+n)=\lim _{N \rightarrow \infty} \sum_{|n| \leq N} \hat{f}(n) e^{2 \pi i n t}
$$

for all $t \in[0,1)$, where

$$
\hat{f}(n)=\int_{\mathbb{R}} f(t) e^{-2 \pi i n t} d t
$$

Lipschitz summation formula. Let $k \in \mathbb{Z}_{>1}$. For $\tau \in \mathbb{H}$, we have

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(\tau+n)^{k}}=\frac{(-2 \pi i)^{k}}{\Gamma(k)} \sum_{r=1}^{\infty} r^{k-1} e^{2 \pi i r \tau} .
$$

Sketch of Proof. By the Poisson summation formula we have

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(\tau+n)^{k}}=\sum_{r \in \mathbb{Z}} \int_{-\infty}^{\infty} \frac{e^{-2 \pi i r x}}{(x+\tau)^{k}} d x
$$

- When $r=0$, the integral is 0 .
- When $r<0$, we move the line of integration to the horizontal line $\operatorname{Im} x=T$ and let T tend to infinity. The integral is 0 .
- When $r>0$, we move the line of integration to the line $\operatorname{Im} x=-T$ and let $T \rightarrow \infty$. By doing so, we cross the pole of the integrand at $x=-\tau$. Thus, the integral is

$$
-2 \pi i \cdot \operatorname{Res}_{x=-\tau}\left(\frac{e^{-2 \pi i r x}}{(x+\tau)^{k}}\right)=\frac{(-2 \pi i)^{k}}{(k-1)!} r^{k-1} e^{2 \pi i r \tau} .
$$

Proof of Theorem (use G_{k}).

$$
\begin{aligned}
G_{k}(\tau) & :=\sum_{\substack{c, d \in \mathbb{Z},(c, d) \neq(0,0)}} \frac{1}{(c \tau+d)^{k}}=\sum_{d \neq 0} \frac{1}{d^{k}}+\sum_{\substack{c \neq 0 \\
d \in \mathbb{Z}}} \frac{1}{(c \tau+d)^{k}} \\
& =2 \zeta(k)+2 \sum_{\substack{c>0 \\
d \in \mathbb{Z}}} \frac{1}{(c \tau+d)^{k}} \\
& =2 \zeta(k)+2 \frac{(2 \pi i)^{k}}{\Gamma(k)} \sum_{r>0} r^{k-1} \sum_{c>0} q^{r c} \\
& =2 \zeta(k)+2 \frac{(2 \pi i)^{k}}{\Gamma(k)} \sum_{r=1}^{\infty} \frac{r^{k-1} q^{r}}{1-q^{r}} .
\end{aligned}
$$

Thus,

$$
E_{k}(\tau)=1+\frac{(2 \pi i)^{k}}{\Gamma(k) \zeta(k)} \sum_{r=1}^{\infty} \frac{r^{k-1} q^{r}}{1-q^{r}}
$$

Proof of Theorem.

Due to the exclusion-inclusion principle, we can rewrite $E_{k}(\tau)$ as

$$
\begin{aligned}
E_{k}(\tau) & =1+\sum_{c>0} \sum_{\substack{d \in \mathbb{Z} \\
\operatorname{gcc}(c, d)=1}} \frac{1}{(c \tau+d)^{k}} \\
& =1+\sum_{c>0} \sum_{m \mid c} \mu(m) \sum_{d \in \mathbb{Z}, m \mid d} \frac{1}{(c \tau+d)^{k}} \\
& =1+\sum_{c>0} \sum_{m \mid c} \frac{\mu(m)}{m^{k}} \sum_{d \in \mathbb{Z}} \frac{1}{(c \tau / m+d)^{k}}
\end{aligned}
$$

where $\mu(m)$ is the Möbius function.
Applying Lipschitz summation formula, we obtain

$$
E_{k}(\tau)=1+\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{c>0} \sum_{m \mid c} \frac{\mu(m)}{m^{k}} \sum_{r \in \mathbb{N}} r^{k-1} e^{2 \pi i r c \tau / m}
$$

Thus

$$
\begin{aligned}
E_{k}(\tau) & =1+\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{c \in \mathbb{N}} \sum_{m \mid c} \frac{\mu(m)}{m^{k}} \sum_{r \in \mathbb{N}} r^{k-1} e^{2 \pi i r c \tau / m} \\
& =1+\frac{(2 \pi i)^{k}}{(k-1)!} \sum_{m=1}^{\infty} \frac{\mu(m)}{m^{k}} \sum_{r=1}^{\infty} \sum_{c=1}^{\infty} r^{k-1} e^{2 \pi i r c \tau}
\end{aligned}
$$

Noticing

$$
\sum_{m=1}^{\infty} \frac{\mu(m)}{m^{k}}=\prod_{p \text { prime }}\left(1-\frac{1}{p^{k}}\right)=\frac{1}{\zeta(k)}
$$

we see that

$$
E_{k}(\tau)=1+\frac{(2 \pi i)^{k}}{\Gamma(k) \zeta(k)} \sum_{r=1}^{\infty} \frac{r^{k-1} q^{r}}{1-q^{r}}
$$

where we set $q=e^{2 \pi i \tau}$.

The series can also be written as

$$
E_{k}(\tau)=1+\frac{(2 \pi i)^{k}}{\Gamma(k) \zeta(k)} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where $\sigma_{k-1}(n)$ is the sum of divisors function defined by

$$
\sigma_{k-1}(n)=\sum_{d \mid n, d>0} d^{k-1}
$$

For $n=2 m \in 2 \mathbb{Z}^{+}$, the zeta values are given by

$$
\zeta(2 m)=\frac{(-1)^{m-1}}{(2 m)!} 2^{2 m-1} \pi^{2 m} B_{2 m}
$$

where B_{n} is the Bernoulli number and can be determined by the Tayler expansion

$$
\frac{y}{e^{y}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

Proposition III.2.8. Let $f(z)$ be a meromorphic modular form of weight k for $\operatorname{PSL}_{2}(\mathbb{Z})$. Then

$$
v_{\infty}(f)+\sum_{P \in \mathbb{H}} \frac{1}{e_{P}} v_{P}(f)=\frac{k}{12},
$$

where

$$
v_{P}(f)=\operatorname{ord}_{p}(f):= \begin{cases}m, & \text { if } f \text { has a zero of order } m \text { at } P, \\ -m, & \text { if } f \text { has a pole of order } m \text { at } P, \\ 0, & \text { otherwise },\end{cases}
$$

and e_{P} is the order of the isotropy group of P.

Proposition III.2.9-10.

1. $M_{0}\left(\operatorname{PSL}_{2}(\mathbb{Z})\right)=\mathbb{C}$
2. $M_{k}\left(\operatorname{PSL}_{2}(\mathbb{Z})\right)=\{0\}$ if $k=2$ or $k<0$.

Corollary (Dimension Formulas)

For positive even integers k We have

$$
\operatorname{dim} M_{k}\left(\operatorname{PSL}_{2}(\mathbb{Z})\right)= \begin{cases}\lfloor k / 12\rfloor, & \text { if } k \equiv 2 \bmod 12, \\ \lfloor k / 12\rfloor+1, & \text { if } k \not \equiv 2 \bmod 12 .\end{cases}
$$

and
$\operatorname{dim} S_{k}\left(\operatorname{PSL}_{2}(\mathbb{Z})\right)= \begin{cases}0, & \text { if } k=2, \\ \lfloor k / 12\rfloor-1, & \text { if } k \equiv 2 \bmod 12, k \geq 14, \\ \lfloor k / 12\rfloor, & \text { if } k \not \equiv 2 \bmod 12 .\end{cases}$

Proposition III.2.9-12.

1. $S_{k}\left(\operatorname{PSL}_{2}(\mathbb{Z})=\mathbb{C} \Delta\right.$
2. $M_{k}\left(\operatorname{PSL}_{2}(\mathbb{Z})\right)=S_{k}\left(\operatorname{PSL}_{2}(\mathbb{Z})\right) \oplus \mathbb{C} G_{k}$, for $k \geq 4$.
3. For any $f \in M_{k}\left(\operatorname{PSL}_{2}(\mathbb{Z})\right)$,

$$
f=\sum_{4 i+6 j=k} c_{i, j} E_{4}^{i} E_{6}^{j}, \quad \text { for some } c_{i, j} \in \mathbb{C} .
$$

4. The elliptic j-funEisenstein seriesction gives a bijection from $X_{0}(1)$ to $\mathbb{P}^{1}(\mathbb{C})$.
5. The field of meromorphic functions on $X_{0}(1)$ is $\mathbb{C}(j)$.
