The Modular Group $\mathrm{SL}_{2}(\mathbb{Z})$ and Its
 Congruence Subgroups

[Koblitz]: III. 1

Linear fractional transformation

Denote by $\mathrm{SL}_{2}(\mathbb{R})$ (SL stands for special linear group) the group of 2×2 real matrices of determinant 1 . The linear fractional transformation of $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$:

$$
\begin{gathered}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z \longmapsto \frac{a z+b}{c z+d} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \infty \longmapsto \frac{a}{c}=\lim _{z \rightarrow \infty}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z
\end{gathered}
$$

gives a group action of $\mathrm{SL}_{2}(\mathbb{R})$ on $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$.

Recall.

- $\operatorname{PSL}_{2}(\mathbb{R}):=\mathrm{SL}_{2}(\mathbb{R}) /\{ \pm /\}$ acts faithfully on $\hat{\mathbb{C}}$.
- For any $g \in \operatorname{PSL}_{2}(\mathbb{R})$,

$$
\operatorname{Im}(g z)=\frac{\operatorname{lm}(z)}{|c z+d|^{2}}, \quad \text { where } g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Hence, $\operatorname{PSL}_{2}(\mathbb{R})$ acts faithfully on

$$
\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{lm}(z)>0\} .
$$

Notations. In this course, we will denote

- $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ and $\bar{\Gamma}=\operatorname{PSL}_{2}(\mathbb{Z})$.
- For any $G \leq \mathrm{SL}_{2}(\mathbb{R})$,

$$
\bar{G}= \begin{cases}G /\{ \pm I\}, & \text { if }-I \in G, \\ G, & \text { if }-I \notin G .\end{cases}
$$

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$ be a representation of a linear
fractional transformations. When $\gamma \neq \pm I$, there are three possibilities, namely,

- γ has one fixed point on $\mathbb{P}^{1}(\mathbb{R})$,
- γ has two distinct fixed points on $\mathbb{P}^{1}(\mathbb{R})$,
- γ has one fixed point in \mathbb{H} and the complex conjugate one in $\overline{\mathbb{H}}$.

Definition. An element $\gamma \in \mathrm{SL}_{2}(\mathbb{R})$ is

- parabolic if it has one fixed point,
- hyperbolic if it has two distinct fixed points on $\mathbb{P}^{1}(\mathbb{R})$,
- elliptic if it has a pair of conjugate complex numbers as fixed points.

Lemma. Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq \pm I \in S L_{2}(\mathbb{R})$. Then

- γ is parabolic if and only if $|a+d|=2$,
- γ is hyperbolic if and only if $|a+d|>2$,
- γ is elliptic if and only if $|a+d|<2$.

Defintion. A point in $\mathbb{P}^{1}(\mathbb{R})$ fixed by a parabolic element is called a cusp, and a point in \mathbb{H} fixed by an elliptic element is called an elliptic point.

Congruence Subgroups

Definition. Let G be a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{R})$ commensurable with $\mathrm{SL}_{2}(\mathbb{Z})$. If G contains the subgroup

$$
\Gamma(N)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \bmod N\right\}
$$

for some positive integer N, then Γ is a congruence subgroup.
The smallest such positive integer N is the level of G. The group $\Gamma(N)$ is called the principal congruence subgroup of level N.
Facts.

- $\bar{\Gamma}(N)= \begin{cases}\Gamma(N) /\{ \pm /\}, & \text { if } N \leq 2, \\ \Gamma(N), & \text { if } N>2 .\end{cases}$
- $\Gamma(N)$ is normal in $\mathrm{SL}_{2}(\mathbb{Z})$ and $\mathrm{SL}_{2}(\mathbb{Z}) / \Gamma(N) \simeq \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$.

Congruence Subgroups

Let N be a poistive integer. The following two types of congruence subgroups

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{\gamma \in \operatorname{SL}_{2}(\mathbb{Z}): \gamma \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad \bmod N\right\} \\
& \Gamma_{1}(N)=\left\{\gamma \in \operatorname{SL}_{2}(\mathbb{Z}): \gamma \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \quad \bmod N\right\}
\end{aligned}
$$

are most often encountered in number theory.
Proposition. We have $\Gamma(N) \triangleleft \Gamma_{1}(N) \triangleleft \Gamma_{0}(N) \leq S L_{2}(\mathbb{Z})$.

- $\left[\Gamma_{1}(N): \Gamma(N)\right]=N$,
- $\left[\Gamma_{0}(N): \Gamma_{1}(N)\right]=N \prod(1-1 / p)$,
- $\left[\operatorname{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]=N \prod_{p \mid N}^{p \mid N}(1+1 / p)$.

Moduli Spaces

For a fixed $\tau \in \mathbb{H}$, let L_{τ} be the lattice $L_{\tau}:=\mathbb{Z} \tau+\mathbb{Z}$ and
$E_{\tau}=\mathbb{C} / L_{\tau}$.

G	moduli space for G
$\Gamma(N)$	$\left\{\left[E_{\tau},\left(\tau / N+L_{\tau}, 1 / N+L_{\tau}\right)\right]: \tau \in \mathbb{H}\right\}$
$\Gamma_{1}(N)$	$\left\{\left[E_{\tau}, 1 / N+L_{\tau}\right]: \tau \in \mathbb{H}\right\}$
$\Gamma_{0}(N)$	$\left\{\left[E_{\tau},\left\langle 1 / N+L_{\tau}\right\rangle\right]: \tau \in \mathbb{H}\right\}$
$\mathrm{SL}_{2}(\mathbb{Z})$	$\left\{\left[E_{\tau}\right]: \tau \in \mathbb{H}\right\}$

Notation. Two points [$E_{\tau}, *$] and $\left[E_{\tau^{\prime}}, *^{\prime}\right]$ are equal if and only if $G \tau=G \tau^{\prime}$.

Quotient Space
Isomorphism Classes

$$
\begin{array}{cc}
\Gamma(N) \backslash \mathbb{H} & \text { elliptic curve }+ \text { a "basis" of points of order } N \\
\Gamma_{1}(N) \backslash \mathbb{H} & \text { elliptic curve }+ \text { a point of order } N \\
\Gamma_{0}(N) \backslash \mathbb{H} & \text { elliptic curve }+ \text { a cyclic subgroup of order } N \\
\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H} & \text { elliptic curve }
\end{array}
$$

Fundamental Domain

Example

Let $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ be a lattice in \mathbb{C}. The fundamental parallelogram

$$
\Pi_{L}:=\left\{a \omega_{1}+b \omega_{2}: 0 \leq a \leq 1,0 \leq b \leq 1\right\}
$$

is a fundamental domain for the complex torus \mathbb{C} / L.
Definition. Let $G \leq \mathrm{PSL}_{2}(\mathbb{Z})$ be a discrete subgroup. A set
$F \subset \mathbb{H}^{*}:=\mathbb{H} \cup \mathbb{P}^{1}(\mathbb{Q})$ is called a fundamental domain for G if

- F is a closed region,
- any points $\tau \in \mathbb{H}^{*}$ is G-equivalent to a point in F.
- if $\tau \neq \tau^{\prime} \in F$ are G-equivalent, then τ and τ^{\prime} belong to the boundary of F.

Proposition III.1.1. A fundamental domain for $\operatorname{PSL}_{2}(\mathbb{Z})$ is

$$
F:=\left\{x+i y \in \mathbb{H}:|x| \leq 1 / 2, x^{2}+y^{2} \geq 1\right\} \cup\{i \infty\} .
$$

(Pictures by Bao Pham)

$\operatorname{PSL}_{2}(\mathbb{Z})$

Proposition III.1.4. The modular group $\mathrm{PSL}_{2}(\mathbb{Z})$ is generated by

$$
T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Key idea: Induction on $c+$ Division Algorithm. For $c>1$, write $d=c q+r, 0<r<c$. Then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) T^{-q}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & -q \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & -a q+b \\
c & r
\end{array}\right)
$$

and
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) T^{-q} S=\left(\begin{array}{cc}a & -a q+b \\ c & r\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}-a q+b & -a \\ r & -c\end{array}\right)$.

Proposition. The set of cusps of $\operatorname{PSL}_{2}(\mathbb{Z})$ are $\mathbb{P}^{1}(\mathbb{Q})$, and the cusps are all equivalent to each other under $\operatorname{PSL}_{2}(\mathbb{Z})$.

Theorem.

- Every elliptic element of $\mathrm{PSL}_{2}(\mathbb{Z})$ has order 2 or 3 . An element of $\mathrm{PSL}_{2}(\mathbb{Z})$ has order 2 if and only if its trace is 0 . An element has order 3 if and only if its trace has absolute value 1.
- Every elliptic element of order 2 is conjugate to $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ in $\operatorname{PSL}_{2}(\mathbb{Z})$. Every elliptic element of order 3 is conjugate to either $\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$ or $\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right)$.
- $\mathrm{PSL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ has only two elliptic points. One is represented by i, which is of order 2 , and the other is represented by $e^{\pi i / 3}$, which is of order 3 .

Here is another choice of fundamental domain for $\operatorname{PSL}_{2}(\mathbb{Z})$ and its related tessellation of \mathbb{H}^{*}.

Proposition. Let F be a fundamental domain for $\operatorname{PSL}_{2}(\mathbb{Z})$. Let G be a subgroup of $\mathrm{PSL}_{2}(\mathbb{Z})$ of finite index, and γ_{j} be its right coset representatives. Then the set

$$
\bigcup_{j} \gamma_{j} F
$$

is a fundamental domain for G.
Advertisement.

- Bao Pham's work: Algorithm Relating to Finite Index Subgroups of the Modular Group.
- Southern Regional Number Theory Conference (3/21-3/22): https://www.math.Isu.edu/srntc/nt2020/

