The Modular Group $SL_2(\mathbb{Z})$ and Its Congruence Subgroups

[Koblitz]: III.1

Linear fractional transformation

Denote by $SL_2(\mathbb{R})$ (SL stands for special linear group) the group of 2×2 real matrices of determinant 1. The linear fractional transformation of $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z \longmapsto \frac{az+b}{cz+d},$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \infty \longmapsto \frac{a}{c} = \lim_{z \to \infty} \begin{pmatrix} a & b \\ c & d \end{pmatrix} z,$$

gives a group action of $SL_2(\mathbb{R})$ on $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.

Recall.

- $PSL_2(\mathbb{R}) := SL_2(\mathbb{R})/\{\pm I\}$ acts faithfully on $\hat{\mathbb{C}}$.
- For any $g \in \mathrm{PSL}_2(\mathbb{R})$,

$$\mathsf{Im}(gz) = rac{\mathsf{Im}(z)}{|cz+d|^2}, \quad ext{where } g = egin{pmatrix} a & b \ c & d \end{pmatrix}.$$

Hence, $\mathrm{PSL}_2(\mathbb{R})$ acts faithfully on $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}.$

Notations. In this course, we will denote

•
$$\Gamma = SL_2(\mathbb{Z})$$
 and $\overline{\Gamma} = PSL_2(\mathbb{Z})$.

• For any $G \leq \operatorname{SL}_2(\mathbb{R})$,

$$\overline{G} = \begin{cases} G/\{\pm I\}, & \text{if } -I \in G, \\ G, & \text{if } -I \notin G. \end{cases}$$

Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ be a representation of a linear fractional transformations. When $\gamma \neq \pm I$, there are three possibilities, namely,

- γ has one fixed point on $\mathbb{P}^1(\mathbb{R})$,
- γ has two distinct fixed points on $\mathbb{P}^1(\mathbb{R})$,
- γ has one fixed point in $\mathbb H$ and the complex conjugate one in $\mathbb H$.

Definition. An element $\gamma \in SL_2(\mathbb{R})$ is

- parabolic if it has one fixed point,
- hyperbolic if it has two distinct fixed points on $\mathbb{P}^1(\mathbb{R})$,
- elliptic if it has a pair of conjugate complex numbers as fixed points.

Lemma. Let
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq \pm l \in SL_2(\mathbb{R})$$
. Then

- γ is parabolic if and only if |a + d| = 2,
- γ is hyperbolic if and only if |a + d| > 2,
- $\dot{\gamma}$ is elliptic if and only if |a + d| < 2.

Definition. A point in $\mathbb{P}^1(\mathbb{R})$ fixed by a parabolic element is called a cusp, and a point in \mathbb{H} fixed by an elliptic element is called an elliptic point.

Congruence Subgroups

Definition. Let *G* be a discrete subgroup of $SL_2(\mathbb{R})$ commensurable with $SL_2(\mathbb{Z})$. If *G* contains the subgroup

$$\Gamma(N) = \left\{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \right\}$$

for some positive integer N, then Γ is a congruence subgroup. The smallest such positive integer N is the level of G. The group $\Gamma(N)$ is called the principal congruence subgroup of level N.

Facts.

•
$$\overline{\Gamma}(N) = \begin{cases} \Gamma(N)/\{\pm I\}, & \text{if } N \leq 2, \\ \Gamma(N), & \text{if } N > 2. \end{cases}$$

• $\Gamma(N)$ is normal in $SL_2(\mathbb{Z})$ and $SL_2(\mathbb{Z})/\Gamma(N) \simeq SL_2(\mathbb{Z}/N\mathbb{Z})$.

Congruence Subgroups

Let N be a poistive integer. The following two types of congruence subgroups

$$\Gamma_0(N) = \left\{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \ \gamma \equiv \begin{pmatrix} * & * \\ \mathbf{0} & * \end{pmatrix} \mod N \right\},$$

$$\Gamma_1(N) = \left\{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod N \right\}$$

are most often encountered in number theory.

Proposition. We have $\Gamma(N) \lhd \Gamma_1(N) \lhd \Gamma_0(N) \le SL_2(\mathbb{Z})$.

•
$$[\Gamma_1(N) : \Gamma(N)] = N$$
,
• $[\Gamma_0(N) : \Gamma_1(N)] = N \prod_{\substack{p \mid N \\ p \mid N}} (1 - 1/p)$,
• $[SL_2(\mathbb{Z}) : \Gamma_0(N)] = N \prod_{\substack{p \mid N \\ p \mid N}} (1 + 1/p)$.

Moduli Spaces

For a fixed $\tau \in \mathbb{H}$, let L_{τ} be the lattice $L_{\tau} := \mathbb{Z}\tau + \mathbb{Z}$ and $E_{\tau} = \mathbb{C}/L_{\tau}$.

Notation. Two points $[E_{\tau}, *]$ and $[E_{\tau'}, *']$ are equal if and only if $G_{\tau} = G_{\tau'}$.

Quotient Space	Isomorphism Classes
$\Gamma(N) ackslash \mathbb{H}$	elliptic curve $+$ a "basis" of points of order <i>N</i>
$\Gamma_1(N) ackslash \mathbb{H}$	elliptic curve $+$ a point of order N
$\Gamma_0(N) ackslash \mathbb{H}$	elliptic curve $+$ a cyclic subgroup of order N
$\mathrm{SL}_2(\mathbb{Z})ackslash\mathbb{H}$	elliptic curve

Fundamental Domain

Example

Let $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ be a lattice in \mathbb{C} . The fundamental parallelogram

$$\Pi_L := \{ a\omega_1 + b\omega_2 : 0 \le a \le 1, 0 \le b \le 1 \}$$

is a fundamental domain for the complex torus \mathbb{C}/L .

Definition. Let $G \leq PSL_2(\mathbb{Z})$ be a discrete subgroup. A set $F \subset \mathbb{H}^* := \mathbb{H} \cup \mathbb{P}^1(\mathbb{Q})$ is called a fundamental domain for *G* if

- F is a closed region,
- any points $\tau \in \mathbb{H}^*$ is *G*-equivalent to a point in *F*.
- if τ ≠ τ' ∈ F are G-equivalent, then τ and τ' belong to the boundary of F.

Proposition III.1.1. A fundamental domain for $PSL_2(\mathbb{Z})$ is

$$F := \{x + iy \in \mathbb{H} : |x| \le 1/2, \ x^2 + y^2 \ge 1\} \cup \{i\infty\}.$$

(Pictures by Bao Pham)

$PSL_2(\mathbb{Z})$

Proposition III.1.4. The modular group $\mathrm{PSL}_2(\mathbb{Z})$ is generated by

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Key idea: Induction on c + Division Algorithm. For c > 1, write d = cq + r, 0 < r < c. Then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} T^{-q} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & -q \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & -aq+b \\ c & r \end{pmatrix}$$

and

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} T^{-q}S = \begin{pmatrix} a & -aq+b \\ c & r \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -aq+b & -a \\ r & -c \end{pmatrix}.$$

Proposition. The set of cusps of $PSL_2(\mathbb{Z})$ are $\mathbb{P}^1(\mathbb{Q})$, and the cusps are all equivalent to each other under $PSL_2(\mathbb{Z})$.

Theorem.

- Every elliptic element of PSL₂(Z) has order 2 or 3. An element of PSL₂(Z) has order 2 if and only if its trace is 0. An element has order 3 if and only if its trace has absolute value 1.
- Every elliptic element of order 2 is conjugate to $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ in PSL₂(Z). Every elliptic element of order 3 is conjugate to either $\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ or $\begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$.
- $PSL_2(\mathbb{Z}) \setminus \mathbb{H}$ has only two elliptic points. One is represented by *i*, which is of order 2, and the other is represented by $e^{\pi i/3}$, which is of order 3.

Here is another choice of fundamental domain for $PSL_2(\mathbb{Z})$ and its related tessellation of $\mathbb{H}^*.$

Proposition. Let *F* be a fundamental domain for $PSL_2(\mathbb{Z})$. Let *G* be a subgroup of $PSL_2(\mathbb{Z})$ of finite index, and γ_j be its right coset representatives. Then the set

$$\bigcup_{j} \gamma_{j} F$$

is a fundamental domain for G.

Advertisement.

- Bao Pham's work: Algorithm Relating to Finite Index Subgroups of the Modular Group.
- Southern Regional Number Theory Conference (3/21-3/22): https://www.math.lsu.edu/srntc/nt2020/