Projective Space and Elliptic Curves

[Koblitz]: I. 3

Let K be a field.

- Affine Space. The affine n-space over K is the set

$$
\mathbb{A}^{n}(K):=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in K\right\} .
$$

- Projective Space. The projective n-space over K is the set
$\mathbb{P}^{n}(K):=\left\{P=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in K, P \neq(0, \ldots, 0)\right\} / \sim$,
where $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right) \sim\left(y_{0}, y_{1}, y_{2}, \ldots, y_{n}\right)$ if and only if $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right)=\lambda\left(y_{0}, y_{1}, y_{2}, \ldots, y_{n}\right)$, for some $\lambda \in K^{\times}$.

An equivalence class is denoted by $\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right]$, and the individual x_{0}, \ldots, x_{n} are called homogeneous coordinates for the corresponding point.

Plane Curves

- Affine plane curves. Let $f(x, y) \in K[x, y]$ be a non-constant polynomial without repeated factors in \bar{K}. The equation $f(x, y)=0$ gives an affine curve C. Denote

$$
C(F)=\left\{(x, y) \in F^{2}: f(x, y)=0\right\}
$$

the set of F-rational points on C for a given extension field F of K.

- Projective plane curves. Let $\tilde{f}(X, Y, Z) \in K[X, Y, Z]$ be a non-constant homogeneous polynomial without repeated factors in \bar{K}. The equation $\tilde{f}(X, Y, Z)=0$ gives a projective plane curve C. Denote

$$
C(F)=\left\{[X, Y, Z] \in \mathbb{P}^{2}(F): \tilde{f}(X, Y, Z)=0\right\}
$$

the set of F-rational points on C for the extension field F of K.

Some equivalent definitions. Let K be a field. An elliptic curve over K can be defined as

- a nonsingular projective curve E of genus 1 together with a base point $O \in E(K)$.
- a nonsingular projective plane curve over K of the form

$$
\begin{aligned}
& E: Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}, \\
& a_{i} \in K . \text { (Here } \mathcal{O}=[0,1,0] \text { is the base point.) }
\end{aligned}
$$

Remark. Such equation is the so-called Weierstrass equation.

- We can write the Weierstrass equation for our elliptic curve using non-homogeneous coordinates $x=X / Z$ and $y=Y / Z:$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in K
$$

- If $\operatorname{char}(K) \neq 2$, 3 , we can simplify the equation as

$$
E: y^{2}=x^{3}+a x+b, a, b \in K
$$

by using suitable linear substitutions.

